Advertisement

Stress Signaling Under Metal and Metalloid Toxicity

  • Rabia Amir
  • Saman Taufiq
  • Norina Noor
  • Irum Nauman
  • Faiza Munir
  • Rumana Keyani
  • Ayesha T. Tahir
Chapter

Abstract

Plants growth and development is greatly dependent on metals such as copper, manganese and iron and it can disrupt normal functions of a plant when the same metals accumulate in excess. Therefore, a balance in metal concentration in required to fulfill the need of plant’s nutrition and at the same time do not cause any toxic effects to a plant. Plants have evolved various efficient mechanisms to keep metal homeostasis. Homeostasis is a process that involves number of steps including metal uptake, chelation, trafficking and sequestration. Furthermore, the physiological responses of plants to heavy metal and the cellular mechanisms that are required for heavy metal stress tolerance are of great significance. Plant hormones interaction with heavy metals along with other factors like stress signaling induced gene expression and the study of metal stress at gene, enzyme and proteome level is vital to lessen their toxic effects. The intercellular concentrations of metal ions saturates the defense systems in plants which in turns triggers the reactive oxygen species (ROS) production and the inhibition of metal dependent antioxidant enzymes. On the basis of physicochemical properties, the bioactive-metals have been divided into two categories that are redox-active metals such as Cu, Cr, Fe and Mn and non-redox active metals such as Ni, Cd, Zn, Hg and Al. The mechanism of toxicity tolerance in some plants involves the binding of toxic metals at cell walls of leaves and roots, away from sensitive locations within the cell or storing them in a vacuolar section thus helping the plants to cope the metal stress.

Keywords

Abiotic stress Calcium Cadmium Nitric oxide Stress signaling Phytoremediation 

References

  1. Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17(4):1233–1251PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad P, Prasad MNV (2011) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, LondonGoogle Scholar
  3. Allagulova CR, Maslennikova D, Avalbaev A, Fedorova K, Yuldashev R, Shakirova F (2015) Influence of 24-epibrassinolide on growth of wheat plants and the content of dehydrins under cadmium stress. Russ J Plant Physiol 62(4):465–471CrossRefGoogle Scholar
  4. Amri B, Khamassi K, Ali MB, da Silva JAT, Kaab LBB (2016) Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. S Afr J Bot 106:35–40CrossRefGoogle Scholar
  5. An J-P, Wang X-N, Yao J-F, Ren Y-R, You C-X, Wang X-F, Hao Y-J (2017) Apple MdMYC2 reduces aluminum stress tolerance by directly regulating MdERF3 gene. Plant Soil 418:255–266CrossRefGoogle Scholar
  6. Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P (2016) Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029CrossRefGoogle Scholar
  7. Antonovics J, Bradshaw AD, Turner R (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85CrossRefGoogle Scholar
  8. Arrivault S, Senger T, Krämer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879PubMedCrossRefGoogle Scholar
  9. Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252(2):399–413PubMedCrossRefGoogle Scholar
  10. Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16CrossRefGoogle Scholar
  11. Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49(2):215–222CrossRefGoogle Scholar
  12. Babaoğlu S, Kuşvuran Ş, Ellialtioğlu Ş, Açik L, Adigüzel N (2009) Antioxidative enzyme response of heavy metal hyperaccumulator Alyssum Murale to Ni+2 stress. Int J Agron Agric Res 2(5):194–197Google Scholar
  13. Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  14. Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  15. Bashri G, Prasad SM (2015) Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37(3):49.  https://doi.org/10.1007/s11738-014-1745-z CrossRefGoogle Scholar
  16. Beladi M, Habibi D, Kashani A, Paknejad F, Nooralvandi T (2011) Phytoremediation of lead and copper by Sainfoin (Onobrychis vicifolia): role of antioxidant enzymes and biochemical biomarkers. Am Eur J Agric Environ Sci 10(3):440–449Google Scholar
  17. Bhaduri AM, Fulekar M (2012) Antioxidant enzyme responses of plants to heavy metal stress. Rev Environ Sci Biotechnol 11(1):55–69CrossRefGoogle Scholar
  18. Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14(3):6382–6413PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boojar M (2010) Role of antioxidant enzyme responses and phytochelatins in tolerance strategies of Alhagi camelorum Fisch growing on copper mine. Acta Bot Croat 69(1):107–121Google Scholar
  21. Breckle S-W, Kahle H (1991) Ecological geobotany/autecology and ecotoxicology. In: Behnke HD, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in botany. Springer, BerlinGoogle Scholar
  22. Bricker TJ, Pichtel J, Brown HJ, Simmons M (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 36(9):1597–1610CrossRefGoogle Scholar
  23. Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis Ethylene-Insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47(4):308–312PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carrió-Seguí À, Romero P, Sanz A, Peñarrubia L (2016) Interaction between ABA signaling and copper homeostasis in Arabidopsis thaliana. Plant Cell Physiol 57(7):1568–1582PubMedPubMedCentralGoogle Scholar
  26. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chen L, Wang T, Zhao M, Tian Q, Zhang W-H (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235(2):375–386PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen J, Gutjahr C, Bleckmann A, Dresselhaus T (2015) Calcium signaling during reproduction and biotrophic fungal interactions in plants. Mol Plant 8(4):595–611PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cho EJ, Yokozawa T, Rhyu DY, Kim HY, Shibahara N, Park JC (2003) The inhibitory effects of 12 medicinal plants and their component compounds on lipid peroxidation. Am J Chin Med 31(06):907–917PubMedCrossRefPubMedCentralGoogle Scholar
  30. Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681.  https://doi.org/10.4161/psb.23681 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Clarke ND, Berg JM (1998) Zinc fingers in Caenorhabditis elegans: finding families and probing pathways. Science 282(5396):2018–2022PubMedCrossRefPubMedCentralGoogle Scholar
  32. Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116(3):1063–1072PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57(1):34–39CrossRefGoogle Scholar
  35. Cuypers A, Hendrix S, dos Reis RA, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470.  https://doi.org/10.3389/fpls.2016.00470 CrossRefPubMedPubMedCentralGoogle Scholar
  36. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813.  https://doi.org/10.1038/nrm2256 CrossRefPubMedPubMedCentralGoogle Scholar
  37. DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5(9):1117–1132PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dar TA, Uddin M, Khan MMA, Hakeem K, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57CrossRefGoogle Scholar
  39. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53.  https://doi.org/10.3389/fenvs.2014.00053 CrossRefGoogle Scholar
  40. De Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845PubMedCrossRefPubMedCentralGoogle Scholar
  41. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51(2):198–210PubMedCrossRefPubMedCentralGoogle Scholar
  42. Desbrosses-Fonrouge A-G, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579(19):4165–4174PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: From molecules to ecosystems. Springer Nature, Victoria, pp 73–97CrossRefGoogle Scholar
  44. Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dixit AR, Dhankher OP (2011) A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One 6(6):e20921.  https://doi.org/10.1371/journal.pone.0020921 CrossRefPubMedPubMedCentralGoogle Scholar
  46. El-Tayeb M, El-Enany A, Ahmed N (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regul 50(2–3):191–199CrossRefGoogle Scholar
  47. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120.  https://doi.org/10.1155/2015/756120 CrossRefGoogle Scholar
  48. Fan SK, Fang XZ, Guan MY, Ye YQ, Lin XY, Du ST, Jin CW (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci 5:721.  https://doi.org/10.3389/fpls.2014.00721 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Farooq H, Asghar HN, Khan MY, Saleem M, Zahir ZA (2015) Auxin-mediated growth of rice in cadmium-contaminated soil. Turk J Agric For 39(2):272–276CrossRefGoogle Scholar
  50. Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 132(2):289–296PubMedCrossRefPubMedCentralGoogle Scholar
  51. Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol 57(9):783–795PubMedCrossRefPubMedCentralGoogle Scholar
  52. Flora S, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501–523PubMedPubMedCentralGoogle Scholar
  53. Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad M (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New york, pp 395–412CrossRefGoogle Scholar
  54. Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN (2014) Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. A sustainable approach, vol 2. Academic, Cambridge, UK, pp 215–248CrossRefGoogle Scholar
  55. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gemrotová M, Kulkarni MG, Stirk WA, Strnad M, Van Staden J, Spíchal L (2013) Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul 71(2):137–145CrossRefGoogle Scholar
  57. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494CrossRefGoogle Scholar
  59. Guan C, Ji J, Wu D, Li X, Jin C, Guan W, Wang G (2015) The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Mol Breed 35(5):123.  https://doi.org/10.1007/s11032-015-0313-6 CrossRefGoogle Scholar
  60. Günther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta Mol Cell Res 1823(9):1416–1425CrossRefGoogle Scholar
  61. Hadi F, Ali N, Ahmad A (2014) Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Biorem J 18(1):46–55CrossRefGoogle Scholar
  62. Hall J (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hameed A, Qadri TN, Siddiqi T, Iqbal M (2011) Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz J Plant Physiol 23(1):46–54CrossRefGoogle Scholar
  64. Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116(1):73–78PubMedCrossRefPubMedCentralGoogle Scholar
  65. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174(3):499–506PubMedCrossRefPubMedCentralGoogle Scholar
  66. Helmersson A, von Arnold S, Bozhkov PV (2008) The level of free intracellular zinc mediates programmed cell death/cell survival decisions in plant embryos. Plant Physiol 147(3):1158–1167PubMedPubMedCentralCrossRefGoogle Scholar
  67. Herbik A, Giritch A, Horstmann C, Becker R, Balzer H-J, Baumlein H, Stephan UW (1996) Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol 111(2):533–540PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hsu Y, Kao C (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26(6):867–874PubMedCrossRefPubMedCentralGoogle Scholar
  69. Huang X-Y, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9(6):787–797PubMedCrossRefPubMedCentralGoogle Scholar
  70. Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103(2):282–287PubMedCrossRefPubMedCentralGoogle Scholar
  71. Jan S, Parray JA (2016) Approaches to heavy metal tolerance in plants. Springer Nature, VictoriaCrossRefGoogle Scholar
  72. Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci U S A 105(30):10619–10624PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ji P, Jiang Y, Tang X, Nguyen TH, Tong YA, Gao P, Han W (2015) Enhancing of phytoremediation efficiency using indole-3-acetic acid (IAA). Soil Sediment Contam 24(8):909–916CrossRefGoogle Scholar
  74. Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5(5):415–424PubMedCrossRefGoogle Scholar
  75. Kampfenkel K, Vanmontagu M, Inze D (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225(1):165–167PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R (2014) 24-epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biochem 10(3):110–121Google Scholar
  77. Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15(11):2427–2439CrossRefGoogle Scholar
  78. Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman J-F (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteome 72(3):379–396CrossRefGoogle Scholar
  79. Kishor PK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108(4):1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial Proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8(8):1323–1335PubMedPubMedCentralCrossRefGoogle Scholar
  81. Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226(6):1379–1387PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteome 74(8):1301–1322CrossRefGoogle Scholar
  83. Kuo MC, Kao CH (2004) Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings. Bot Bull Acad Sin 45:291–299Google Scholar
  84. Laloi C, Przybyla D, Apel K (2006) A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot 57(8):1719–1724PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants, Functional genomics perspectives, vol 2. Springer, Heidelberg, pp 195–225CrossRefGoogle Scholar
  86. Leonard M, Graham S, Bonacum D (2004) The human factor: the critical importance of effective teamwork and communication in providing safe care. Qual Saf Health Care 13(suppl 1):i85–i90PubMedPubMedCentralCrossRefGoogle Scholar
  87. Li X, Chanroj S, Wu Z, Romanowsky SM, Harper JF, Sze H (2008) A distinct endosomal Ca2+/Mn2+ pump affects root growth through the secretory process. Plant Physiol 147(4):1675–1689PubMedPubMedCentralCrossRefGoogle Scholar
  88. Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016a) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615.  https://doi.org/10.3389/fpls.2016.00615/full CrossRefPubMedPubMedCentralGoogle Scholar
  89. Li P, Zhao C, Zhang Y, Wang X, Wang X, Wang J, Wang F, Bi Y (2016b) Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma 253(1):185–200PubMedCrossRefPubMedCentralGoogle Scholar
  90. Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14(3):5842–5878PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu J, Qian SY, Guo Q, Jiang J, Waalkes MP, Mason RP, Kadiiska MB (2008) Cadmium generates reactive oxygen-and carbon-centered radical species in rats: insights from in vivo spin-trapping studies. Free Radic Biol Med 45(4):475–481PubMedPubMedCentralCrossRefGoogle Scholar
  92. Liu X, Lin Y, Liu D, Wang C, Zhao Z, Cui X, Liu Y, Yang Y (2017) MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Sci Rep 7(1):1620.  https://doi.org/10.1038/s41598-017-01803-3 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14(1):37–42PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lukatkin A, Gracheva N, Grishenkova N, Dukhovskis P, Brazaitite A (2007) Cytokinin-like growth regulators mitigate toxic action of zinc and nickel ions on maize seedlings. Russ J Plant Physiol 54(3):381–387CrossRefGoogle Scholar
  95. Luo Z-b, He X-J, Chen L, Tang L, Gao S, Chen F (2010) Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. Int J Agric Biol 12:119–124Google Scholar
  96. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29(3):177.  https://doi.org/10.1007/s11738-007-0036-3 CrossRefGoogle Scholar
  97. Malekzadeh P, Khara J, Farshian S, Jamal-Abad AZK, Rahmatzadeh S (2007) Cadmium toxicity in maize seedlings: changes in antioxidant enzyme activities and root growth. Pak J Biol Sci 10:127–131PubMedCrossRefPubMedCentralGoogle Scholar
  98. Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer briefs in molecular science. Springer, Dordrecht, pp 27–53CrossRefGoogle Scholar
  99. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667PubMedPubMedCentralCrossRefGoogle Scholar
  100. Matysik J, Alia BB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532Google Scholar
  101. Mendoza-Soto AB, Sánchez F, Hernández G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105.  https://doi.org/10.3389/fpls.2012.00105 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Mills RF, Doherty ML, López-Marqués RL, Weimar T, Dupree P, Palmgren MG, Pittman JK, Williams LE (2008) ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiol 146(1):116–128PubMedPubMedCentralCrossRefGoogle Scholar
  103. Min H, Cai S, Rui Z, Sha S, Xie K, Xu Q (2013) Calcium-mediated enhancement of copper tolerance in Elodea canadensis. Biol Plant 57(2):365–369CrossRefGoogle Scholar
  104. Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498PubMedCrossRefPubMedCentralGoogle Scholar
  106. Mohan D, Singh KP, Sinha S, Gosh D (2005) Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. Carbon 43(8):1680–1693CrossRefGoogle Scholar
  107. Monferrán MV, Wunderlin DA (2013) Biochemistry of metals/metalloids toward remediation process. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, pp 43–71CrossRefGoogle Scholar
  108. Montero-Palmero M, Martin-Barranco A, Alonso J, Escobar C, Hernandez L (2013) Ethylene mediates in the early oxidative stress induced by mercury. Biotechnology 94(2):156–202Google Scholar
  109. Moustafa K, Cross JM (2016) Genetic approaches to study plant responses to environmental stresses: an overview. Biology 5(2):20.  https://doi.org/10.3390/biology5020020 CrossRefPubMedCentralGoogle Scholar
  110. Müller L (1986) Consequences of cadmium toxicity in rat hepatocytes: mitochondrial dysfunction and lipid peroxidation. Toxicology 40(3):285–295PubMedCrossRefPubMedCentralGoogle Scholar
  111. Munzuroğlu Ö, Zengin FK, Yahyagil Z (2008) The abscisic acid levels of wheat (Triticum aestivum L. cv. Çakmak 79) seeds that were germinated under heavy metal (Hg++, Cd++, Cu++) stress. Gazi Univ J Sci 21(1):1–7Google Scholar
  112. Naidu B, Paleg L, Aspinall D, Jennings A, Jones G (1991) Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry 30(2):407–409CrossRefGoogle Scholar
  113. Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118(4):1233–1241PubMedPubMedCentralCrossRefGoogle Scholar
  114. Neumann PM (1995) The role of cell wall adjustments in plant resistance to water deficits. Crop Sci 35(5):1258–1266CrossRefGoogle Scholar
  115. Odjegba V, Fasidi I (2007) Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress. Rev Biol Trop 55(3–4):815–823PubMedPubMedCentralGoogle Scholar
  116. Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine maxrelation to Phytochelatin synthase. J Biol Chem 277(7):4747–4754PubMedCrossRefPubMedCentralGoogle Scholar
  117. Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic, SydneyGoogle Scholar
  118. Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJ, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104(20):8532–8537PubMedPubMedCentralCrossRefGoogle Scholar
  119. Peterson P (1971) Unusual accumulations of elements by plants and animals. Sci Prog 59(236):505–526Google Scholar
  120. Peterson PJ (1975) Element accumulation by plants and their tolerance of toxic mineral soils. In: Proceedings of the international conference on heavy metals in the environment. University of Toronto, Canada, October 1975Google Scholar
  121. Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513CrossRefGoogle Scholar
  122. Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8(9–10):1757–1764PubMedCrossRefPubMedCentralGoogle Scholar
  123. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254(2):771–783PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4(5):2531–2538PubMedCrossRefPubMedCentralGoogle Scholar
  126. Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, Delattre O, Sigal-Zafrani B, Bollet M, Longy M (2012) Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 72(21):5454–5462PubMedCrossRefPubMedCentralGoogle Scholar
  127. Potters G, Pasternak TP, Guisez Y, Jansen MA (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32(2):158–169PubMedCrossRefPubMedCentralGoogle Scholar
  128. Prasad MNV (2013) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, BerlinGoogle Scholar
  129. Puig S, Peñarrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12(3):299–306PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629.  https://doi.org/10.3389/fpls.2016.00629 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ramakrishna B, Rao SSR (2013) 24-Epibrassinolide maintains elevated redox state of AsA and GSH in radish (Raphanus sativus L.) seedlings under zinc stress. Acta Physiol Plant 35(4):1291–1302CrossRefGoogle Scholar
  132. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rasio EA, Bendayan M, Goresky CA (1977) Diffusion permeability of an isolated rete mirabile. Circ Res 41(6):791–798Google Scholar
  134. Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57(3):400–412PubMedCrossRefPubMedCentralGoogle Scholar
  135. Reddy DS, Bhatnagar-Mathur P, Vadez V, Sharma KK (2012) Grain legumes (soybean, chickpea, and peanut): omics approaches to enhance abiotic stress toleranceGoogle Scholar
  136. Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37(9):178. 37:178.  https://doi.org/10.1007/s11738-015-1929-1 CrossRefGoogle Scholar
  137. Reid RJ, Brookes JD, Tester MA, Smith FA (1996) The mechanism of zinc uptake in plants. Planta 198(1):39–45CrossRefGoogle Scholar
  138. Riley P (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65(1):27–33PubMedCrossRefPubMedCentralGoogle Scholar
  139. Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz K-J, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19(12):4120–4130PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24Google Scholar
  141. Roy SK, Cho S-W, Kwon SJ, Kamal AHM, Kim S-W, Oh M-W, Lee M-S, Chung K-Y, Xin Z, Woo S-H (2016) Morpho-physiological and proteome level responses to cadmium stress in sorghum. PLoS One 11(2):e0150431.  https://doi.org/10.1371/journal.pone.0150431 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3(1):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  143. Saleem M, Asghar HN, Khan MY, Zahir ZA (2015) Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium (VI)-contaminated soil. Environ Sci Pollut Res 22(14):10610–10617CrossRefGoogle Scholar
  144. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109(4):1427–1433PubMedPubMedCentralCrossRefGoogle Scholar
  145. Selivankina SY, Karavaiko N, Maslova G, Zubkova N, Prokoptseva O, Smith AR, Hall MA, Kulaeva O (2004) Cytokinin-binding protein from Arabidopsis thaliana leaves participating in transcription regulation. Plant Growth Regul 43(1):15–26CrossRefGoogle Scholar
  146. Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726PubMedCrossRefPubMedCentralGoogle Scholar
  147. Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49(6):1531–1535Google Scholar
  148. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S (2010) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52(2):344–360PubMedCrossRefPubMedCentralGoogle Scholar
  149. Shaw B (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol Plant 37(4):587–596CrossRefGoogle Scholar
  150. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143.  https://doi.org/10.3389/fpls.2015.01143 CrossRefPubMedGoogle Scholar
  151. Sirhindi G (2013) Brassinosteroids: biosynthesis and role in growth, development, and thermotolerance responses. In: Rout G, Das A (eds) Molecular stress physiology of plants. Springer, India, pp 309–329CrossRefGoogle Scholar
  152. Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21(4):559–565PubMedPubMedCentralCrossRefGoogle Scholar
  153. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336PubMedCrossRefPubMedCentralGoogle Scholar
  154. Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  155. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder V (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97(9):4991–4996PubMedPubMedCentralCrossRefGoogle Scholar
  156. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818PubMedCrossRefPubMedCentralGoogle Scholar
  157. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208PubMedCrossRefPubMedCentralGoogle Scholar
  158. Vansuyt G, Lopez F, Inzé D, Briat J-F, Fourcroy P (1997) Iron triggers a rapid induction of ascorbate peroxidase gene expression in Brassica napus. FEBS Lett 410(2–3):195–200PubMedCrossRefPubMedCentralGoogle Scholar
  159. Vierling E (1991) The roles of heat shock proteins in plants. Ann Rev Plant Biol 42(1):579–620CrossRefGoogle Scholar
  160. Vos C, Schat H, Waal M, Vooijs R, Ernst W (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82(4):523–528CrossRefGoogle Scholar
  161. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang R, Wang J, Zhao L, Yang S, Song Y (2015) Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28(1):123–132PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697PubMedPubMedCentralCrossRefGoogle Scholar
  164. Weast R, Astle M (1984) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  165. Weckx JE, Clijsters HM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96(3):506–512CrossRefGoogle Scholar
  166. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 402647. doi: https://doi.org/10.5402/2011/402647
  167. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581(7):1464–1474PubMedCrossRefGoogle Scholar
  168. Xie Y, Ye S, Wang Y, Xu L, Zhu X, Yang J, Feng H, Yu R, Karanja B, Gong Y (2015) Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing. Front Plant Sci 6:202.  https://doi.org/10.3389/fpls.2015.00202 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179CrossRefGoogle Scholar
  170. Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicumfrutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209PubMedCrossRefGoogle Scholar
  171. Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68(4):505–512PubMedCrossRefPubMedCentralGoogle Scholar
  172. Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83(5):818–830PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yuan H-M, Liu W-C, Jin Y, Lu Y-T (2013) Role of ROS and auxin in plant response to metal-mediated stress. Plant Signal Behav 8(7):e24671.  https://doi.org/10.4161/psb.24671 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zengin FK, Kirbag S (2007) Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J Environ Biol 28(3):561–566PubMedPubMedCentralGoogle Scholar
  176. Zhang J, Liu S, Zhang L, Nian H, Chen L (2016) Effect of aluminum stress on the expression of calmodulin and the role of calmodulin in aluminum tolerance. J Biosci Bioeng 122(5):558–562PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophy Res Commun 374(3):538–542CrossRefGoogle Scholar
  179. Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99PubMedCrossRefPubMedCentralGoogle Scholar
  180. Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rabia Amir
    • 1
  • Saman Taufiq
    • 1
  • Norina Noor
    • 1
  • Irum Nauman
    • 1
  • Faiza Munir
    • 1
  • Rumana Keyani
    • 2
  • Ayesha T. Tahir
    • 2
  1. 1.Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
  2. 2.Bio Sciences DepartmentComsats Institute of Information Technology (CIIT)IslamabadPakistan

Personalised recommendations