Cell Death or Survival Against Oxidative Stress

  • Non Miyata
  • Kanji Okumoto
  • Yukio FujikiEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 89)


Peroxisomes contain anabolic and catabolic enzymes including oxidases that produce hydrogen peroxide as a by-product. Peroxisomes also contain catalase to metabolize hydrogen peroxide. It has been recognized that catalase is localized to cytosol in addition to peroxisomes. A recent study has revealed that loss of VDAC2 shifts localization of BAK, a pro-apoptotic member of Bcl-2 family, from mitochondria to peroxisomes and cytosol, thereby leading to release of peroxisomal matrix proteins including catalase to the cytosol. A subset of BAK is localized to peroxisomes even in wild-type cells, regulating peroxisomal membrane permeability and catalase localization. The cytosolic catalase potentially acts as an antioxidant to eliminate extra-peroxisomal hydrogen peroxide.


BAK Catalase CHO mutant Membrane permeabilization Oligomerization Oxidative stress Peroxisome Reactive oxygen species VDAC2, apoptosis 



We thank the supports: MEXT KAKENHI grant JP26116007 and JSPS KAKENHI grants JP24247038, JP25112518, JP25116717, JP15K14511, JP15K21743, JP17H03675, and grants from the Takeda Science Foundation, the Naito Foundation, the Japan, Foundation for Applied Enzymology, and the Novartis Foundation (Japan) for the Promotion of Science.


  1. Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Trafffic 15:94–103CrossRefGoogle Scholar
  2. Borgese N, Brambillasca S, Colombo S (2007) How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 19:368–375CrossRefGoogle Scholar
  3. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272CrossRefGoogle Scholar
  4. Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Chung-Ping Liao C-P, Gavathiotis E, Hsieh JJ, Cheng EH (2015) An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol 17:1270–1281CrossRefGoogle Scholar
  5. Cheng EH-YA, Wei MC, Weiler S, Flavell RA, Mak TM, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefGoogle Scholar
  6. Cheng EH-Y, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517 (New York, N.Y)CrossRefGoogle Scholar
  7. Costello JL, Castro IG, Camões F, Schrader TA, McNeall D, Yang J, Giannopoulou E-A, Gomes S, Pogenberg V, Bonekamp NA, Ribeiro D, Wilmanns M, Jedd G, Islinger M, Schrader M (2017) Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J Cell Sci 130:1675–1687CrossRefGoogle Scholar
  8. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63CrossRefGoogle Scholar
  9. Dammai V, Subramani S (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105:187–196CrossRefGoogle Scholar
  10. Delille HK, Schrader M (2008) Targeting of hFis1 to peroxisomes is mediated by Pex19p. J Biol Chem 283:31107–31115CrossRefGoogle Scholar
  11. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681CrossRefGoogle Scholar
  12. Eriksson AM, Zetterqvist M-A, Lundgren B, Andersson K, Beije B, DePierre JW (1991) Studies on the intracellular distributions of soluble epoxide hydrolase and of catalase by digitonin-permeabilization of hepatocytes isolated from control and clofibrate-treated mice. Eur J Biochem 198:471–476CrossRefGoogle Scholar
  13. Eriksson AM, Lundgren B, Andersson K, DePierre JW (1992) Is the cytosolic catalase induced by peroxisome proliferators in mouse liver on its way to the peroxisomes? FEBS Lett 308:211–214CrossRefGoogle Scholar
  14. Fujiki Y, Miyata N, Mukai S, Okumoto K, Cheng EH (2017) BAK regulates catalase release from peroxisomes. Mol Cell Oncol 4 (article: e1306610)CrossRefGoogle Scholar
  15. Ghaedi K, Itagaki A, Toyama R, Tamura S, Matsumura T, Kawai A, Shimozawa N, Suzuki Y, Kondo N, Fujiki Y (1999) Newly identified Chinese hamster ovary cell mutants defective in peroxisome assembly represent complementation group A of human peroxisome biogenesis disorders and one novel group in mammals. Exp Cell Res 248:482–488CrossRefGoogle Scholar
  16. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287:12815–12827CrossRefGoogle Scholar
  17. Hartman P, Belmont P, Zuber S, Ishii N, Anderson J (2003) Relationship between catalase and life span in recombinant inbred strains of Caenorhabditis elegans. J Nematol 35:314–319PubMedPubMedCentralGoogle Scholar
  18. Hegde RS, Keenan RJ (2011) Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12:787–798CrossRefGoogle Scholar
  19. Hosoi K, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, Fujiki Y (2017) The VDAC2–BAK axis regulates peroxisomal membrane permeability. J Cell Biol 216:709–721CrossRefGoogle Scholar
  20. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol Cell 63:21–33CrossRefGoogle Scholar
  21. Itoyama A, Michiyuki S, Honsho M, Yamamoto T, Moser A, Yoshida Y, Fujiki Y (2013) Mff functions with Pex11pβ and DLP1 in peroxisomal fission. Biol Open 2:998–1006CrossRefGoogle Scholar
  22. Kim H, Rafiuddin-Shah M, Tu H-C, Jeffers JR, Zambetti GP, Hsieh JJ-D, Cheng EH-Y (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358CrossRefGoogle Scholar
  23. Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686CrossRefGoogle Scholar
  24. Kutay U, Hartmann E, Rapoport TA (1993) A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3:72–75CrossRefGoogle Scholar
  25. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25:10822–10832CrossRefGoogle Scholar
  26. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490CrossRefGoogle Scholar
  27. O’Neill KL, Huang K, Zhang J, Chen Y, Luo X (2016) Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev 30:973–988CrossRefGoogle Scholar
  28. Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12:1067–1083CrossRefGoogle Scholar
  29. Otera H, Fujiki Y (2012) Pex5p imports folded tetrameric catalase by interaction with Pex13p. Trafffic 13:1364–1377CrossRefGoogle Scholar
  30. Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7:817–822CrossRefGoogle Scholar
  31. Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177:197–204CrossRefGoogle Scholar
  32. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645CrossRefGoogle Scholar
  33. Setoguchi K, Otera H, Mihara K (2006) Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J 25:5635–5647CrossRefGoogle Scholar
  34. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632CrossRefGoogle Scholar
  35. Tateishi K, Okumoto K, Shimozawa N, Tsukamoto T, Osumi T, Suzuki Y, Kondo N, Okano I, Fujiki Y (1997) Newly identified Chinese hamster ovary cell mutants defective in peroxisome biogenesis represent two novel complementation groups in mammals. Eur J Cell Biol 73:352–359PubMedGoogle Scholar
  36. Titorenko VI, Terlecky SR (2011) Peroxisome metabolism and cellular aging. Traffic 12:252–259CrossRefGoogle Scholar
  37. Walton PA, Brees C, Lismont C, Apanasets O, Fransen M (2017) The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress. Biochem Biophys Acta 1864:1833–1843CrossRefGoogle Scholar
  38. Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332CrossRefGoogle Scholar
  39. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  40. Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730 (New York, N.Y)CrossRefGoogle Scholar
  41. Yagita Y, Hiromasa T, Fujiki Y (2013) Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. J Cell Biol 200:651–666CrossRefGoogle Scholar
  42. Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y (2017) Deficiency of a retinal dystrophy protein, acyl-CoA binding domain-containing 5 (ACBD5), impairs peroxisomal β-oxidation of very-long-chain fatty acids. J Biol Chem 292:691–705CrossRefGoogle Scholar
  43. Yano T, Oku M, Akeyama N, Itoyama A, Yurimoto H, Kuge S, Fujiki Y, Sakai Y (2010) A novel fluorescent sensor protein for visualization of redox states in the cytoplasm and in peroxisomes. Mol Cell Biol 30:3758–3766CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesKyushu UniversityNishi-ku, FukuokaJapan
  2. 2.Graduate School of Systems Life SciencesKyushu UniversityNishi-ku, FukuokaJapan
  3. 3.Medical Institute of Bioregulation, Kyushu UniversityHigashi-ku, FukuokaJapan
  4. 4.Department of Chemistry, Faculty of SciencesKyushu UniversityNishi-ku, FukuokaJapan

Personalised recommendations