Advertisement

Dermatological Applications of EPR: Skin-Deep or In-Depth?

  • Martyna Krzykawska-Serda
  • Dominika Michalczyk-Wetula
  • Przemysław M. PłonkaEmail author
Chapter

Abstract

The skin is often referred to as the biggest uniform human body organ, and also as the “brain outside,” exposed not only, like the lung epithelium, to the atmospheric air but to other constituents of the open environment including changeable temperature and solar irradiation. The importance of what happens in the skin is therefore not to be overestimated for general condition of the whole organism. Techniques of electron paramagnetic resonance (EPR; called also electron spin resonance, ESR) spectroscopy and imaging belong to the important experimental and diagnostic approaches in dermatology, but the size and shape of skin often make technical problems. The present chapter will cover the basic and clinical applications of EPR to study the skin (including skin tumors) and hair. As the numerous available review papers usually describe the specificity of the EPR-related methods for dermatologists, we decided to cover also some basic aspects of dermatology, to make the chapter more useful also to the specialists in EPR theory and instrumentation. A particular emphasis will be put on the most recent discoveries and innovations, to show that the apparently purely dermatological aspects of such investigations reveal also deeper, systemic implications.

Keywords

Dermatology Dosimetry Drug carriers EPR ESR Free radicals Hair Melanin Nanoparticles Oximetry Skin 

Notes

Acknowledgments

The Faculty of Biochemistry, Biophysics, and Biotechnology of the Jagiellonian University in Kraków is a partner of the Leading National Research Center (KNOW) supported by the Polish Ministry of Science and Higher Education. The paper was partially supported from this fund (PMP, grant KNOW 35p/10/2015). The support to MKS from grant PRELUDIUMII NSC, 2011/03/N/NZ4/02019 is also acknowledged.

Conflicts of Interest The authors declare no conflict of interest.

References

  1. 1.
    Łukiewicz SJ, Zweier JL, editors. Nitric oxide in allograft rejection and anti-tumor response. Boston-Dordrecht London: Kluwer Academic Publisher; 1998.Google Scholar
  2. 2.
    Eaton SS, Eaton GR, Berliner JL. Biomedical ESR. Vol 23 of the biological magnetic resonance series. New York-Boston: Kluwer Academic Publishers; 2005.Google Scholar
  3. 3.
    Berliner LJ. The evolution of biomedical EPR (ESR). Biomed Spectrosc Imaging. 2017;5(1):5–26. Available from: http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/BSI-150128 CrossRefGoogle Scholar
  4. 4.
    Plonka PM. Electron paramagnetic resonance as a unique tool for skin and hair research. Exp Dermatol. 2009;18(5):472–84. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19368555 PubMedCrossRefGoogle Scholar
  5. 5.
    Fuchs J, Packer L. Electron paramagnetic resonance in dermatologic research with particular reference to photodermatology. Photodermatol Photoimmunol Photomed. 1990;7(6):229–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1966464 PubMedGoogle Scholar
  6. 6.
    Cal K, Zakowiecki D, Stefanowska J. Advanced tools for in vivo skin analysis. Int J Dermatol. 2010;49(5):492–9. Available from: http://doi.wiley.com/10.1111/j.1365-4632.2010.04355.x PubMedCrossRefGoogle Scholar
  7. 7.
    Butt OI, Carruth R, Kutala VK, Kuppusamy P, Moldovan NI. Stimulation of Peri-implant vascularization with bone marrow-derived progenitor cells: monitoring by in vivo EPR Oximetry. Tissue Eng. 2007;13(8):2053–61. Available from: http://www.liebertonline.com/doi/abs/10.1089/ten.2006.0225 PubMedCrossRefGoogle Scholar
  8. 8.
    Kadirov RK, Arkhipova SS, Shahmardanova SA, Rizvanov AA. Structural changes in the pancreas and its blood vessels at the early stages of ischemia. Bionanoscience. 2016;6(4):293–6. Available from: http://link.springer.com/10.1007/s12668-016-0265-2 CrossRefGoogle Scholar
  9. 9.
    Ziaja M, Pyka J, Machowska A, Maslanka A, Plonka PM. Nitric oxide spin-trapping and NADPH-Diaphorase activity in mature rat brain after injury. J Neurotrauma. 2007;24(12):1845–54. Available from: http://www.liebertonline.com/doi/abs/10.1089/neu.2007.0303 PubMedCrossRefGoogle Scholar
  10. 10.
    Lin Y, Yokoyama H, Ishida S, Tsuchihashi N, Ogata T. In vivo electron spin resonance analysis of nitroxide radicals injected into a rat by a flexible surface-coil-type resonator as an endoscope- or a stethoscope-like device. Magma Magn Reson Mater Physics Biol Med. 1997;5(2):99–103. Available from: http://link.springer.com/10.1007/BF02592239 CrossRefGoogle Scholar
  11. 11.
    Epel B, Redler G, Tormyshev V, Halpern HJ. Towards human oxygen images with Electron paramagnetic resonance imaging. Adv Exp Med Biol. 2016;876(5):363–9. Available from: http://informahealthcare.com/doi/abs/10.3109/10715769109105220 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Płonka PM, Elas M. Application of the electron paramagnetic resonance spectroscopy to modern biotechnology. Curr Top Biophys. 2002;26(1):176–89. Available from: http://ctbo.home.amu.edu.pl/ Google Scholar
  13. 13.
    Eaton SS, Eaton GR. The world as viewed by and with unpaired electrons. J Magn Reson. 2012;223:151–63. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1090780712002674 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hagen WR. Metallomic EPR spectroscopy. Metallomics. 2009;1(5):384. Available from: http://xlink.rsc.org/?DOI=b907919j PubMedCrossRefGoogle Scholar
  15. 15.
    Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, et al. What is the “true” function of skin? Exp Dermatol. 2002;11(2):159–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11994143 PubMedCrossRefGoogle Scholar
  16. 16.
    Tobin DJ. Biochemistry of human skin—our brain on the outside. Chem Soc Rev. 2006;35(1):52–67. Available from: http://xlink.rsc.org/?DOI=B505793K PubMedCrossRefGoogle Scholar
  17. 17.
    Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4):390–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12095893 PubMedGoogle Scholar
  18. 18.
    Goldsmith LA. My organ is bigger than your organ. Arch Dermatol. 1990;126(3):301–2. Available from: http://archderm.jamanetwork.com/article.aspx?doi=10.1001/archderm.1990.01670270033005 PubMedCrossRefGoogle Scholar
  19. 19.
    Tamyis NM, Ghodgaonkar DK, Taib MN, Wui WT, Mara UT. Dielectric properties of human skin in vivo in the frequency range 20–38 GHz for 42 healthy volunteers. Proc. of the 28th URSI General Assembly, New Delhi, India, May 23–29, 2005. KP.45(0850), Available from: http://www.ursi.org/Proceedings/ProcGA05/pdf/KP.45(0850).pdf
  20. 20.
    Grant JP, Clarke RN, Symm GT, Spyrou NM. In vivo dielectric properties of human skin from 50 MHz to 2.0 GHz. Phys Med Biol. 1988;33(5):607–12. Available from: http://iopscience.iop.org/article/10.1088/0031-9155/33/5/008/pdf PubMedCrossRefGoogle Scholar
  21. 21.
    Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lübbers DW. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol. 2002;538(Pt 3):985–94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11826181 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thiele J, Elsner P. Oxidants and antioxidants in cutaneous biology. In: Thiele J, Elsner P, Burg G, editors. Current problems in dermatology, vol. 29. Zurich: KARGER; 2001. p. 1–203. Available from: https://www.karger.com/Book/Home/224318.Google Scholar
  23. 23.
    Battie C, Verschoore M. Cutaneous solar ultraviolet exposure and clinical aspects of photodamage. Indian J Dermatology, Venereol Leprol. 2012;78(7):9. Available from: http://www.ijdvl.com/text.asp?2012/78/7/9/97350 CrossRefGoogle Scholar
  24. 24.
    Timares L, Katiyar SK, Elmets CA. DNA damage, apoptosis and langerhans cells–activators of UV-induced immune tolerance. Photochem Photobiol. 2008;84(2):422–36. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2718731&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zastrow L, Groth N, Klein F, Kockott D, Lademann J, Renneberg R, et al. The missing link—light-induced (280–1600 nm) free radical formation in human skin. Skin Pharmacol Physiol. 2009;22(1):31–44. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19122479 PubMedCrossRefGoogle Scholar
  26. 26.
    Brooker C. Human structure and function: nursing applications in clinical practice. St Louis: Mosby; 1998. p. 1–568.Google Scholar
  27. 27.
    Gerard TJ, Bryan D. Principles of anatomy & physiology. New York: John Wiley & Sons, Inc.; 2012. p. 1–1280.Google Scholar
  28. 28.
    Marionnet C, Pierrard C, Vioux-Chagnoleau C, Sok J, Asselineau D, Bernerd F. Interactions between fibroblasts and keratinocytes in morphogenesis of dermal epidermal junction in a model of reconstructed skin. J Invest Dermatol. 2006;126(5):971–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022202X15328931 PubMedCrossRefGoogle Scholar
  29. 29.
    Smola H, Stark HJ, Thiekötter G, Mirancea N, Krieg T, Fusenig NE. Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp Cell Res. 1998;239(2):399–410. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9521858 PubMedCrossRefGoogle Scholar
  30. 30.
    Marinkovich MP, Keene DR, Rimberg CS, Burgeson RE. Cellular origin of the dermal-epidermal basement membrane. Dev Dyn. 1993;197(4):255–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8292823 PubMedCrossRefGoogle Scholar
  31. 31.
    Briggaman RA, Dalldorf FG, Wheeler CE. Formation and origin of basal lamina and anchoring fibrils in adult human skin. J Cell Biol. 1971;51(21):384–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4939526 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Regauer S, Seiler GR, Barrandon Y, Easley KW, Compton CC. Epithelial origin of cutaneous anchoring fibrils. J Cell Biol. 1990;111(5 Pt 1):2109–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2229187 PubMedCrossRefGoogle Scholar
  33. 33.
    McGrath JA, Eady RAJ, Pope FM. Anatomy and Organization of Human Skin. In: Burns T, Breathnach S, Neil C, Griffiths C, editors. Rook’s textbook of dermatology. 7th ed. Malden, MA: Blackwell Publishing, Inc; 2004. p. 3.1–3.84. Available from.  https://doi.org/10.1002/9780470750520.ch3.CrossRefGoogle Scholar
  34. 34.
    Montagna W, Parakkal PF. The structure and function of skin. 3rd ed. New York: Academic Press; 1974. p. 433. Available from: http://www.sciencedirect.com/science/book/9780125052634 Google Scholar
  35. 35.
    Kristl J, Abramović Z, Sentjurc M. Skin oxygenation after topical application of liposome-entrapped benzyl nicotinate as measured by EPR oximetry in vivo: influence of composition and size. AAPS PharmSci. 2003;5(1):E2. (1–9). Available from: https://www.ncbi.nlm.nih.gov/pubmed/12713274 PubMedCrossRefGoogle Scholar
  36. 36.
    Krzic M, Sentjurc M, Kristl J. Improved skin oxygenation after benzyl nicotinate application in different carriers as measured by EPR oximetry in vivo. J Control Release. 2001;70(1–2):203–11. Available from:.  https://doi.org/10.1016/S0168-3659(00)00351-5.CrossRefPubMedGoogle Scholar
  37. 37.
    Braverman IM. Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Invest Dermatol. 1989;93(s2):2S–9S. Available from: https://www.ncbi.nlm.nih.gov/pubmed/2666519 PubMedCrossRefGoogle Scholar
  38. 38.
    Gerlach A. Über das Hautathmen. Arch Anat Physiol. 1851;1:431–79.Google Scholar
  39. 39.
    Raguz M, Mainali L, Widomska J, Subczynski WK. Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chem Phys Lipids. 2011;164(8):819–29. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009308411003070 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003;100(Suppl):11830–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12913119 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development. 1989;106(4):619–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2562658 PubMedGoogle Scholar
  42. 42.
    Watt FM. Terminal differentiation of epidermal keratinocytes. Curr Opin Cell Biol. 1989;1(6):1107–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2699799 PubMedCrossRefGoogle Scholar
  43. 43.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G. Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16(1):3–11. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744427/ PubMedCrossRefGoogle Scholar
  44. 44.
    Fitzpatrick TB, Breathnach AS. The epidermal melanin unit system. Dermatol Wochenschr. 1963;147:481–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14172128 PubMedGoogle Scholar
  45. 45.
    Singh SK, Kurfurst R, Nizard C, Schnebert S, Perrier E, Tobin DJ. Melanin transfer in human skin cells is mediated by filopodia–a model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J. 2010;24(10):3756–69. Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.10-159046 PubMedCrossRefGoogle Scholar
  46. 46.
    Singh SK, Baker R, Sikkink SK, Nizard C, Schnebert S, Kurfurst R, Tobin DJ. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol. 2017;26(11):1125–33. Available from: http://doi.wiley.com/10.1111/exd.13395 PubMedCrossRefGoogle Scholar
  47. 47.
    Stanley JR, Woodley DT, Katz SI, Martin GR. Structure and function of basement membrane. J Invest Dermatol. 1982;79(1):69s–72s. Available from:.  https://doi.org/10.1038/jid.1982.13.CrossRefPubMedGoogle Scholar
  48. 48.
    Breitkreutz D, Mirancea N, Nischt R. Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol. 2009;132(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19333614 PubMedCrossRefGoogle Scholar
  49. 49.
    Breslow A. Prognosis in cutaneous melanoma: tumor thickness as a guide to treatment. Pathol Annu. 1980;15(Pt 1):1–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7443304 PubMedGoogle Scholar
  50. 50.
    Walters KAK. Dermatological and transdermal formulations. In: Walters K, editor. Drugs and the pharmaceutical sciences. New York, London: Informa Healthcare; 2002. p. 567. Available from: https://www.google.com/books?hl=pl&lr=&id=4pycGojmdaoC&oi=fnd&pg=PP1&dq=Dermatological+and+transdermal+formulations&ots=lJO8aJVwGB&sig=kHA0nFeCxf3UEX2ceEpBartU6Zc.Google Scholar
  51. 51.
    McLafferty E, Hendry C, Farley A. The integumentary system: anatomy, physiology and function of skin. Nurs Stand. 2012;27(3):35–42. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23248884 PubMedCrossRefGoogle Scholar
  52. 52.
    Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV Light Touches the Brain and Endocrine System Through Skin, and Why. Endocrinology. 2018;159(5):1992–2007. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29546369 PubMedCrossRefGoogle Scholar
  53. 53.
    Madison KC. Barrier function of the skin:“la raison d’etre” of the epidermis. J Invest Dermatol. 2003;121(2):231–41. Available from: http://www.sciencedirect.com/science/article/pii/S0022202X15303560 PubMedCrossRefGoogle Scholar
  54. 54.
    Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC, Tuckey RC. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960076013000277 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21(5):457–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11041445 PubMedGoogle Scholar
  56. 56.
    Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE, Wei ET. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15(10):1678–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11481215 PubMedCrossRefGoogle Scholar
  57. 57.
    Chao-Chun Yang AT, Chen WC. Handbook of hair in health and disease. In: Preedy VR, editor. Handbook of hair in health and disease. Wageningen: Wageningen Academic Publishers; 2012. p. 51–71. Available from: http://www.wageningenacademic.com/doi/book/10.3920/978-90-8686-728-8.Google Scholar
  58. 58.
    Plonka P, Plonka B, Paus R. Biophysical monitoring of melanogenesis as a tool for pigment and hair research. Arch Dermatol Res. 1995;287(7):687–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8534135 PubMedCrossRefGoogle Scholar
  59. 59.
    Slominski A, Paus R, Plonka P, Chakraborty A, Maurer M, Pruski D, Lukiewicz S. Melanogenesis during the anagen-catagen-telogen transformation of the murine hair cycle. J Invest Dermatol. 1994;102(6):862–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8006449 PubMedCrossRefGoogle Scholar
  60. 60.
    Müller-Röver S, Handjiski B, van der Veen C, Eichmüller S, Foitzik K, McKay IA, Stenn KS, Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol. 2001;117(1):3–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11442744 PubMedCrossRefGoogle Scholar
  61. 61.
    Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev. 2015;90(4):1179–96. Available from: http://doi.wiley.com/10.1111/brv.12151 PubMedCrossRefGoogle Scholar
  62. 62.
    Slominski A, Paus R, Plonka P, Handjiski B, Maurer M, Chakraborty A, Mihm MC Jr. Pharmacological disruption of hair follicle pigmentation by cyclophosphamide as a model for studying the melanocyte response to and recovery from cytotoxic drug damage in situ. J Invest Dermatol. 1996;106(6):1203–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8752658 PubMedCrossRefGoogle Scholar
  63. 63.
    Milner Y, Sudnik J, Filippi M, Kizoulis M, Kashgarian M, Stenn K. Exogen, shedding phase of the hair growth cycle: characterization of a mouse model. J Invest Dermatol. 2002;119(3):639–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12230507 PubMedCrossRefGoogle Scholar
  64. 64.
    Rebora A, Kenogen GM. A new phase of the hair cycle? Dermatology. 2002;205(2):108–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12218222 PubMedCrossRefGoogle Scholar
  65. 65.
    Plonka PM, Michalczyk D, Popik M, Handjiski B, Paus R. Electron paramagnetic resonance (EPR) spectroscopy for investigating murine telogen skin after spontaneous or depilation-induced hair growth. J Dermatol Sci. 2008;49(3):227–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18061408 PubMedCrossRefGoogle Scholar
  66. 66.
    Cash TF. The psychology of hair loss and its implications for patient care. Clin Dermatol. 2001;19:161–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11397595 PubMedCrossRefGoogle Scholar
  67. 67.
    McGarvey E, Baum LD, Pinkerton RC, Rogers LM. Psychological sequelae and alopecia among women with cancer. Cancer Pract. 2001;9:283–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11879330 PubMedCrossRefGoogle Scholar
  68. 68.
    Can G, Demir M, Erol O, Aydiner A. A comparison of men and women’s experiences of chemotherapy-induced alopecia. Eur J Oncol Nurs. 2013;17:255–60. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22901547 PubMedCrossRefGoogle Scholar
  69. 69.
    Choi M, Kim M, Park S, Park G, Jo S, Cho K, et al. Clinical characteristics of chemotherapy-induced alopecia in childhood. J Am Acad Dermatol. 2014;70:499–505. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24355411 PubMedCrossRefGoogle Scholar
  70. 70.
    Wolnicka-Glubisz A, Pecio A, Podkowa D, Kolodziejczyk LM, Plonka PM. Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Exp Dermatol. 2012;21(7):537–40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22716250 PubMedCrossRefGoogle Scholar
  71. 71.
    Hill HZ, Hill GJ, Cieszka K, Plonka PM, Mitchell DL, Meyenhofer MF, Meyenhofer MF, Xin P, Boissy RE. Comparative action spectrum for ultraviolet light killing of mouse melanocytes from different genetic coat color backgrounds. Photochem Photobiol. 1997;65(6):983–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9188277 PubMedCrossRefGoogle Scholar
  72. 72.
    Chikvaidze EN, Partskhaladze TM, Gogoladze TV. Electron spin resonance (ESR/EPR) of free radicals observed in human red hair: a new, simple empirical method of determination of pheomelanin/eumelanin ratio in hair. Magn Reson Chem. 2014;52(7):377–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24757073 PubMedCrossRefGoogle Scholar
  73. 73.
    Wolnicka-Glubisz A, Pecio A, Podkowa D, Plonka PM, Grabacka M. HGF/SF increases number of skin melanocytes but does not alter quality or quantity of follicular melanogenesis. PLoS One. 2013;8(11):e74883. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24223113 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Godechal Q, Leveque P, Marot L, Baurain JF, Gallez B. Optimization of electron paramagnetic resonance imaging for visualization of human skin melanoma in various stages of invasion. Exp Dermatol. 2012;21(5):341–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22509830 PubMedCrossRefGoogle Scholar
  75. 75.
    Godechal Q, Defresne F, Danhier P, Leveque P, Porporato PE, Sonveaux P, Baurain JF, Feron O, Gallez B. Assessment of melanoma extent and melanoma metastases invasion using electron paramagnetic resonance and bioluminescence imaging. Contrast Media Mol Imaging. 2011;6(4):282–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21861288 PubMedCrossRefGoogle Scholar
  76. 76.
    Katsuda H, Kobayashi T, Saito H, Matsunaga T, Ikeya M. Electron spin resonance imaging of mouse B16 melanoma. Chem Pharm Bull (Tokyo). 1990;38(10):2838–40. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1963815 CrossRefGoogle Scholar
  77. 77.
    Lohan SB, Lauer A-C, Arndt S, Friedrich A, Tscherch K, Haag SF, Darvin ME, Vollert H, Kleemann A, Gersonde I, Groth N, Lademann J, Rohn S, Meinke MC. Determination of the antioxidant status of the skin by in vivo-electron paramagnetic resonance (EPR) spectroscopy. Cosmetics. 2015;2:286–301. Available from: http://www.mdpi.com/2079-9284/2/3/286 CrossRefGoogle Scholar
  78. 78.
    Opländer C, Deck A, Volkmar CM, Kirsch M, Liebmann J, Born M, van Abeelen F, van Faassen EE, Kröncke KD, Windolf J, Suschek CV. Mechanism and biological relevance of blue-light (420-453 nm)- induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic Biol Med. 2013;65:1363–77. Available from.  https://doi.org/10.1016/j.freeradbiomed.2013.09.022.CrossRefPubMedGoogle Scholar
  79. 79.
    Matoshvili M, Katsitadze A, Sanikidze T, Tophuria D, Richetta A, D’Epiro S. The role of nitric oxide in the pathogenesis and severity of psoriasis. Georgian Med News. 2014;234:61–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25341240 Google Scholar
  80. 80.
    Pustelny K, Bielanska J, Plonka PM, Rosen GM, Elas M. In vivo spin trapping of nitric oxide from animal tumors. Nitric Oxide. 2007;16(2):202–8. Available from: http://www.sciencedirect.com/science/article/pii/S1089860306004125 PubMedCrossRefGoogle Scholar
  81. 81.
    Konyukhov GV, Nizamov RN, Tarasova NB, Nefedova RV, Petukhov VY, Ibragimova MI, Yusupova GR. Early diagnosis of radiation injuries by methods of immunochemical and EPR analyses. Bali Med J. 2017;6(2):368–70. Available from: http://balimedicaljournal.org/index.php/bmj/article/view/521 CrossRefGoogle Scholar
  82. 82.
    Williams BB, Khan N, Zaki B, Hartford A, Ernstoff MS, Swartz HM. Clinical Electron paramagnetic resonance (EPR) Oximetry using India ink. Boston, MA: Springer; 2010. p. 149–56. Available from: http://link.springer.com/10.1007/978-1-4419-1241-1_21 Google Scholar
  83. 83.
    Khan N, Williams BB, Hou H, Li H, Swartz HM. Repetitive tissue pO measurements by electron paramagnetic resonance oximetry: current status and future potential for experimental and clinical studies. Antioxid Redox Signal. 2007;9(8):1169–82. Available from: http://www.liebertonline.com/doi/abs/10.1089/ars.2007.1635 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Abramovic Z, Sentjurc M, Kristl J, Khan N, Hou H, Swartz HM. Influence of different anesthetics on skin oxygenation studied by electron paramagnetic resonance in vivo. Skin Pharmacol Physiol. 2007;20(2):77–84. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17143012 PubMedCrossRefGoogle Scholar
  85. 85.
    Swartz HM, Hou H, Khan N, Jarvis LA, Chen EY, Williams BB, Kuppusamy P. Advances in probes and methods for clinical EPR oximetry. Adv Exp Med Biol. 2014;812:73–9. Available from:.  https://doi.org/10.1007/978-1-4939-0620-8.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of EPR oximetry. Chem Rev. 2011;110(5):3212–36. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868962/ CrossRefGoogle Scholar
  87. 87.
    Desmet CM, Lafosse A, Vériter S, Porporato PE, Sonveaux P, Dufrane D, Levêque P, Gallez B. Application of electron paramagnetic resonance (EPR) oximetry to monitor oxygen in wounds in diabetic models. PLoS One. 2015;10(12):e0144914. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26659378 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Swartz HM, Williams BB, Zaki BI, Hartford AC, Jarvis LA, Chen EY, Comi RJ, Ernstoff MS, Hou H, Khan N, Swarts SG, Flood AB, Kuppusamy P. Clinical EPR: unique opportunities and some challenges. Acad Radiol. 2014;21(2):197–206. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24439333 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Khan N, Hou H, Hein P, Comi RJ, Buckey JC, Grinberg O, Salikhov I, Lu SY, Wallach H, Swartz HM. Black magic and EPR oximetry: from lab to initial clinical trials. Adv Exp Med Biol. 2005;566:119–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16594143 PubMedCrossRefGoogle Scholar
  90. 90.
    Khan N, Williams BB, Swartz HM. Clinical applications of in vivo EPR: rationale and initial results. Appl Magn Reson. 2006;30(2):185–99. Available from: http://link.springer.com/10.1007/BF03166718 CrossRefGoogle Scholar
  91. 91.
    Kubiak T. Advances in EPR dosimetry in terms of retrospective determination of absorbed dose in radiation accidents. Curr Topic Biophys. 2018;41:11–21. Available from: http://ctbo.home.amu.edu.pl/ Google Scholar
  92. 92.
    Çolak Ş, Özbey T. An ESR study on biological dosimeters: human hair. Radiat Meas. 2011;46(5):465–72. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1350448710004014 CrossRefGoogle Scholar
  93. 93.
    Lange BAJ, Buettner GR. Electron paramagnetic resonance detection of free radicals in UV-irradiated human and mouse skin. In: Thiele J, Elsner P, editors. Oxidants and antioxidants in cutaneous biology. Basel: KARGER; 2000. p. 18–25. Available from: https://www.karger.com/Article/FullText/60658.CrossRefGoogle Scholar
  94. 94.
    Romanyukha A, Trompier F, Reyes RA, Christensen DM, Iddins CJ, Sugarman SL. Electron paramagnetic resonance radiation dose assessment in fingernails of the victim exposed to high dose as result of an accident. Radiat Environ Biophys. 2014;53(4):755–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24957016 PubMedCrossRefGoogle Scholar
  95. 95.
    Marciniak A, Ciesielski B. EPR dosimetry in nails—a review. Appl Spectrosc Rev. 2016;51(1):73–92. Available from: http://www.tandfonline.com/action/journalInformation?journalCode=laps20 CrossRefGoogle Scholar
  96. 96.
    Trompier F, Queinnec F, Bey E, De Revel T, Lataillade JJ, Clairand I, Benderitter M, Bottollier-Depois JF. EPR retrospective dosimetry with fingernails: report on first application cases. Health Phys. 2014;106(6):798–805. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004032-201406000-00023 PubMedCrossRefGoogle Scholar
  97. 97.
    Breathnach AS. Extra-cutaneous melanin. Pigment Cell Res. 1988;1(4):234–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3070524 PubMedCrossRefGoogle Scholar
  98. 98.
    Hu D-N, Simon JD, Sarna T. Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol. 2008;84(3):639–44. Available from: http://doi.wiley.com/10.1111/j.1751-1097.2008.00316.x PubMedCrossRefGoogle Scholar
  99. 99.
    Wassermann HP. Extension of the concept “vertebrate epidermal melanin unit” to embrace visceral pigmentation and leucocytic melanin transport. Nature. 1967;213(5073):282–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6030608 PubMedCrossRefGoogle Scholar
  100. 100.
    Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26455458 PubMedCrossRefGoogle Scholar
  101. 101.
    Clewett DV, Lee T-H, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging. 2016;37:117–26. Available from.  https://doi.org/10.1016/j.neurobiolaging.2015.09.019.CrossRefPubMedGoogle Scholar
  102. 102.
    Goldgeier MH, Klein LE, Klein-Angerer S, Moellmann G, Nordlund JJ. The distribution of melanocytes in the leptomeninges of the human brain. J Invest Dermatol. 1984;82(3):235–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6699426 PubMedCrossRefGoogle Scholar
  103. 103.
    Meyer zum Gottesberge AM. Physiology and pathophysiology of inner ear melanin. Pigment Cell Res. 1988;1(4):238–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3070525 PubMedCrossRefGoogle Scholar
  104. 104.
    Rancan F, Nazemi B, Rautenberg S, Ryll M, Hadam S, Gao Q, Hackbarth S, Haag SF, Graf C, Rühl E, Blume-Peytavi U, Lademann J, Vogt A, Meinke MC. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy. Skin Res Technol. 2014;20(2):182–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24033792 PubMedCrossRefGoogle Scholar
  105. 105.
    Ahlberg S, Meinke MC, Werner L, Epple M, Diendorf J, Blume-Peytavi U, Lademann J, Vogt A, Rancan F. Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes. Eur J Pharm Biopharm. 2014;88(3):651–7. Available from:.  https://doi.org/10.1016/j.ejpb.2014.07.012.CrossRefPubMedGoogle Scholar
  106. 106.
    Haag SF, Taskoparan B, Darvin ME, Groth N, Lademann J, Sterry W, Meinke MC. Determination of the antioxidative capacity of the skin in vivo using resonance Raman and electron paramagnetic resonance spectroscopy. Exp Dermatol. 2011;20(6):483–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21366704 PubMedCrossRefGoogle Scholar
  107. 107.
    Lauer A-C, Groth N, Haag SF, Darvin ME, Lademann J, Meinke MC. Radical scavenging capacity in human skin before and after vitamin C uptake: an in vivo feasibility study using electron paramagnetic resonance spectroscopy. J Invest Dermatol. 2013;133(4):1102–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23190876 PubMedCrossRefGoogle Scholar
  108. 108.
    Megow I, Darvin ME, Meinke MC, Lademann J. A randomized controlled trial of green tea beverages on the in vivo radical scavenging activity in human skin. Skin Pharmacol Physiol. 2017;30:225–33. Available from: https://www.karger.com/?doi=10.1159/000477355 PubMedCrossRefGoogle Scholar
  109. 109.
    Meinke MC, Friedrich A, Tscherch K, Haag SF, Darvin ME, Vollert H, Groth N, Lademann J, Rohn S. Influence of dietary carotenoids on radical scavenging capacity of the skin and skin lipids. Eur J Pharm Biopharm. 2013;84(2):365–73. Available from:.  https://doi.org/10.1016/j.ejpb.2012.11.012.CrossRefPubMedGoogle Scholar
  110. 110.
    Piazena H, Pittermann W, Müller W, Jung K, Kelleher DK, Herrling T, Meffert P, Uebelhack R, Kietzmann M. Effects of water-filtered infrared-a and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin—first results. J Photochem Photobiol B Biol. 2014;138:347–54. Available from:.  https://doi.org/10.1016/j.jphotobiol.2014.06.007.CrossRefGoogle Scholar
  111. 111.
    Fuchs J, Groth N, Herrling T, Zimmer G. Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin. Free Radic Biol Med. 1997;22(6):967–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9034235 PubMedCrossRefGoogle Scholar
  112. 112.
    Nardi G, Manet I, Monti S, Miranda MA, Lhiaubet-Vallet V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer. Free Radic Biol Med. 2014;77:64–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25236741 PubMedCrossRefGoogle Scholar
  113. 113.
    Meinke MC, Müller R, Bechtel A, Haag SF, Darvin ME, Lohan SB, Ismaeel F, Lademann J. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp Dermatol. 2015;24(3):194–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25431109 PubMedCrossRefGoogle Scholar
  114. 114.
    Darvin ME, Haag SF, Meinke MC, Sterry W, Lademann J. Determination of the influence of IR radiation on the antioxidative network of the human skin. J Biophotonics. 2011;4(1–2):21–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24639418 PubMedCrossRefGoogle Scholar
  115. 115.
    Saeidpour S, Lohan SB, Anske M, Unbehauen M, Fleige E, Haag R, Meinke MC, Bittl R, Teutloff C. Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi- frequency electron paramagnetic resonance (EPR) spectroscopy. Eur J Pharm Biopharm. 2017;116:94–101. Available from:.  https://doi.org/10.1016/j.ejpb.2016.10.001.CrossRefPubMedGoogle Scholar
  116. 116.
    Albrecht S, Ahlberg S, Beckers I, Kockott D, Lademann J, Paul V, Zastrow L, Meinke MC. Effects on detection of radical formation in skin due to solar irradiation measured by EPR spectroscopy. Methods. 2016;109:44–54. Available from:.  https://doi.org/10.1016/j.ymeth.2016.06.005.CrossRefPubMedGoogle Scholar
  117. 117.
    Haag SF, Fleige E, Chen M, Fahr A, Teutloff C, Bittl R, Lademann J, Schäfer-Korting M, Haag R, Meinke MC. Skin penetration enhancement of core-multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. Int J Pharm. 2011;416(1):223–8. Available from:.  https://doi.org/10.1016/j.ijpharm.2011.06.044.CrossRefPubMedGoogle Scholar
  118. 118.
    Fernández E, Fajarí L, Rodríguez G, Cócera M, Moner V, Barbosa-Barros L, Kamma-Lorger CS, de la Maza A, López O. Reducing the harmful effects of infrared radiation on the skin using Bicosomes incorporating β -carotene. Skin Pharmacol Physiol. 2016;29(4):169–77. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27379378 PubMedCrossRefGoogle Scholar
  119. 119.
    Lange BA, Buettner GR. Electron paramagnetic resonance detection of free radicals in UV-irradiated human and mouse skin. Curr Probl Dermatol. 2001;29:18–25. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11225198 PubMedCrossRefGoogle Scholar
  120. 120.
    Clément J-L, Ferré N, Siri D, Karoui H, Rockenbauer A, Tordo P. Assignment of the EPR Spectrum of 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct. J Org Chem. 2005;70(4):1198–203. Available from: http://pubs.acs.org/doi/abs/10.1021/jo048518z?journalCode=joceah PubMedCrossRefGoogle Scholar
  121. 121.
    Mukherjee S, Yang L, Vincent C, Lei X, Ottaviani MF, Ananthapadmanabhan KP. A comparison between interactions of triglyceride oil and mineral oil with proteins and their ability to reduce cleanser surfactant-induced irritation. Int J Cosmet Sci. 2015;37(4):371–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25656133 PubMedCrossRefGoogle Scholar
  122. 122.
    Nakagawa K, Minakawa S, Sawamura D. EPR spectroscopic investigation of psoriatic finger nails. Skin Res Technol. 2013;19(4):450–3. Available from: http://doi.wiley.com/10.1111/srt.12068 PubMedGoogle Scholar
  123. 123.
    Nakagawa K, Minakawa S, Sawamura D, Hara H. Skin surface imaging of psoriasis vulgaris by using an electron paramagnetic resonance spin probe. J Dermatol Sci. 2016;81(1):71–3. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26493103 PubMedCrossRefGoogle Scholar
  124. 124.
    Herrling T, Zastrow L, Fuchs J, Groth N. Electron spin resonance detection of UVA-induced free radicals. Skin Pharmacol Appl Ski Physiol. 2002;15(5):381–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12239435 CrossRefGoogle Scholar
  125. 125.
    Bourji K, Meyer A, Chatelus E, Pincemail J, Pigatto E, Defraigne JO, Singh F, Charlier C, Geny B, Gottenberg JE, Punzi L, Cozzi F, Sibilia J. High reactive oxygen species in fibrotic and nonfibrotic skin of patients with diffuse cutaneous systemic sclerosis. Free Radic Biol Med. 2015;87:282–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26143738 PubMedCrossRefGoogle Scholar
  126. 126.
    Takeshita K, Chi C, Hirata H, Ono M, Ozawa T. In vivo generation of free radicals in the skin of live mice under ultraviolet light, measured by L-band EPR spectroscopy. Free Radic Biol Med. 2006;40(5):876–85. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16520239 PubMedCrossRefGoogle Scholar
  127. 127.
    Epel B, Sundramoorthy SV, Barth ED, Mailer C, Halpern HJ. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications. Med Phys. 2011;38(4):2045–52. Available from: http://doi.wiley.com/10.1118/1.3555297 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Epel B, Bowman MK, Mailer C, Halpern HJ. Absolute oxygen R1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med. 2014;72(2):362–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24006331 PubMedCrossRefGoogle Scholar
  129. 129.
    Li J, Wei K, Zuo S, Xu Y, Zha Z, Ke W, Chen K, Ge Z. Light-triggered clustered vesicles with self-supplied oxygen and tissue penetrability for photodynamic therapy against hypoxic tumor. Adv Funct Mater. 2017;27(33):E1702108. (1–13). Available from:.  https://doi.org/10.1002/adfm.201702108.CrossRefGoogle Scholar
  130. 130.
    Pavelescu LA. On reactive oxygen species measurement in living systems. J Med Life. 2015;8(Spec Issue):38–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26361509 PubMedPubMedCentralGoogle Scholar
  131. 131.
    Kawai S, Matsumoto K-I, Utsumi H. An EPR method for estimating activity of antioxidants in mouse skin using an anthralin-derived radical model. Free Radic Res. 2010;44(3):267–74. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20001648 PubMedCrossRefGoogle Scholar
  132. 132.
    Babizhayev MA, Deyev AI, Savel’yeva EL, Lankin VZ, Yegorov YE. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging. J Dermatol Treat. 2012;23(5):345–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21756141 CrossRefGoogle Scholar
  133. 133.
    Ogawa Y, Ueno M, Sekine-Suzuki E, Nakanishi I, Matsumoto K, Fujisaki S. Non-invasive measurement of melanin-derived radicals in living mouse tail using X-band EPR. J Clin Biochem Nutr. 2016;59(3):160–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26060345 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sahle FF, Metz H, Wohlrab J, Neubert RHH. Lecithin-based microemulsions for targeted delivery of Ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res. 2013;30(2):538–51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23135817 PubMedCrossRefGoogle Scholar
  135. 135.
    Sahle FF, Metz H, Wohlrab J, RHH N. Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. Eur J Pharm Biopharm. 2012;82(1):139–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22691416 PubMedCrossRefGoogle Scholar
  136. 136.
    Dos Anjos JLV, de S Neto D, Alonso A. Effects of 1,8-cineole on the dynamics of lipids and proteins of stratum corneum. Int J Pharm. 2007;345(1–2):81–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17600646 PubMedCrossRefGoogle Scholar
  137. 137.
    Lohan SB, Icken N, Teutloff C, Saeidpour S, Bittl R, Lademann J, Fleige E, Haag R, Haag SF, Meinke MC. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multishell (CMS) nanocarriers. Int J Pharm. 2016;501(1–2):271–7. Available from:.  https://doi.org/10.1016/j.ijpharm.2016.02.004.CrossRefPubMedGoogle Scholar
  138. 138.
    Alonso L, Mendanha SA, Marquezin CA, Berardi M, Ito AS, Acuña AU, Alonso A. Interaction of miltefosine with intercellular membranes of stratum corneum and biomimetic lipid vesicles. Int J Pharm. 2012;434(1–2):391–8. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22692081 PubMedCrossRefGoogle Scholar
  139. 139.
    Yonar D, Horasan N, Paktaş DD, Abramović Z, Štrancar J, Sünnetçioǧlu MM, Sentjurc M. Interaction of antidepressant drug, clomipramine, with model and biological stratum corneum membrane as studied by electron paramagnetic resonance. J Pharm Sci. 2013;102(10):3762–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23925997 PubMedCrossRefGoogle Scholar
  140. 140.
    Krzykawska-Serda M, Miller RC, Elas M, Epel B, Barth ED, Maggio M, Halpern HJ. Correlation between hypoxia proteins and EPR-detected hypoxia in tumors. In: Halpern H, La Manna J, Harrison D, Epel B, editors. Oxygen transport to tissue XXXIX Adv Exp Med Biol, vol. 977; 2017. p. 319–25. Available from: http://link.springer.com/10.1007/978-3-319-55231-6_42.CrossRefGoogle Scholar
  141. 141.
    Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–228. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15383650 PubMedCrossRefGoogle Scholar
  142. 142.
    Billingham RE, Silvers WK. The melanocytes of mammals. Q Rev Biol. 1960;35(1):1–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13800713 PubMedCrossRefGoogle Scholar
  143. 143.
    Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature. 1954;174(4432):689. Available from: http://www.ncbi.nlm.nih.gov/pubmed/13213980 PubMedCrossRefGoogle Scholar
  144. 144.
    Sealy RC, Hyde JS, Felix CC, Menon IA, Prota G, Swartz HM, Persad S, Haberman HF. Novel free radicals in synthetic and natural pheomelanins: distinction between dopa melanins and cysteinyldopa melanins by ESR spectroscopy. Proc Natl Acad Sci U S A. 1982;79(9):2885–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6283550 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19(6):572–94. Available from: http://doi.wiley.com/10.1111/j.1600-0749.2006.00345.x PubMedCrossRefGoogle Scholar
  146. 146.
    Sarna T, Plonka PM. Biophysical studies of melanin: paramagnetic, ion-exchange and redox properties of melanin pigments and their Photoreactivity. In: Eaton SR, Eaton GR, Berliner LJ, editors. Biomedical EPR, part A: free radicals, metals, medicine, and physiology. New York, Boston: Kluwer Academic Publishers; 2005. p. 125–46. Available from: http://link.springer.com/10.1007/0-387-26741-7_7.CrossRefGoogle Scholar
  147. 147.
    Slominski A, Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ. Hair follicle pigmentation. J Invest Dermatol. 2005;124(1):13–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15654948 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Brożyna AA, Jóźwicki W, Carlson JA, Slominski AT. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Hum Pathol. 2013;44(10):2071–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23791398 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Slominski A, Plonka PM, Pisarchik A, Smart JL, Tolle V, Wortsman J, Low MJ. Preservation of eumelanin hair pigmentation in proopiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology. 2005;146(3):1245–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15564334 PubMedCrossRefGoogle Scholar
  150. 150.
    Mishra DR, Soni A, Rawat NS, Bokam G. Study of thermoluminescence (TL) and optically stimulated luminescence (OSL) from α-keratin protein found in human hairs and nails: potential use in radiation dosimetry. Radiat Environ Biophys. 2016;55(2):255–64. Available from: http://link.springer.com/10.1007/s00411-016-0634-9 PubMedCrossRefGoogle Scholar
  151. 151.
    Trompier F, Bassinet C, Wieser A, de Cinzia A, Viscomi D, Fattibene P. Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry. Ann Ist Super Sanita. 2009;45(3):287–96. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19861734 PubMedGoogle Scholar
  152. 152.
    Tepe Çam S, Polat M, Seyhan N. The use of human hair as biodosimeter. Appl Radiat Isot. 2014;94:272–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25255305 PubMedCrossRefGoogle Scholar
  153. 153.
    Feingold KR. The importance of lipids in cutaneous function. J Lipid Res. 2007;48(12):2529–30. Available from: http://www.jlr.org/content/48/12/2529.short PubMedCrossRefGoogle Scholar
  154. 154.
    Hadgraft J. Skin, the final frontier. Int J Pharm. 2001;224(1–2):1–18. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517301007311 PubMedCrossRefGoogle Scholar
  155. 155.
    Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11500256 PubMedCrossRefGoogle Scholar
  156. 156.
    Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17169459 PubMedCrossRefGoogle Scholar
  157. 157.
    Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release. 2003;86(1):69–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12490374 PubMedCrossRefGoogle Scholar
  158. 158.
    Gibaldi M, Feldman S. Pharmacokinetic basis for the influence of route of administration on the area under the plasma concentration-time curve. J Pharm Sci. 1969;58(12):1477–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5353263 PubMedCrossRefGoogle Scholar
  159. 159.
    Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine. 2005;1(2):184–90. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963405000547 PubMedCrossRefGoogle Scholar
  160. 160.
    Singh P, Roberts MS. Skin permeability and local tissue concentrations of nonsteroidal anti-inflammatory drugs after topical application. J Pharmacol Exp Ther. 1994;268(1):144–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8301551 PubMedGoogle Scholar
  161. 161.
    Venugopal J, Prabhakaran MP, Low S, Choon AT, Zhang YZ, Deepika G, Ramakrishna S. Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des. 2008;14(22):2184–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18781971 PubMedCrossRefGoogle Scholar
  162. 162.
    Nasir A. Nanotechnology and dermatology: part II–risks of nanotechnology. Clin Dermatol. 2010;28(5):581–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0738081X09001394 PubMedCrossRefGoogle Scholar
  163. 163.
    Butoescu N, Jordan O, Burdet P, Stadelmann P, Petri-Fink A, Hofmann H, Doelker E. Dexamethasone-containing biodegradable superparamagnetic microparticles for intra-articular administration: physicochemical and magnetic properties, in vitro and in vivo drug release. Eur J Pharm Biopharm. 2009;72(3):529–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0939641109001003 PubMedCrossRefGoogle Scholar
  164. 164.
    Rebecca VW, Sondak VK, Smalley KS. A brief history of melanoma: from mummies to mutations. Melanoma Res. 2012;22(2):114–22. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22395415 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sarna M, Zadlo A, Hermanowicz P, Madeja Z, Burda K, Sarna T. Cell elasticity is an important indicator of the metastatic phenotype of melanoma cells. Exp Dermatol. 2014;23(11):813–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25180917 PubMedCrossRefGoogle Scholar
  166. 166.
    Slominski RM, Zmijewski MA, Slominski AT. The role of melanin pigment in melanoma. Exp Dermatol. 2015;24(4):258–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25496715 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wolnicka-Glubisz A, Strickland FM, Wielgus A, Anver M, Merlino G, De Fabo EC, Noonan FP. A melanin-independent interaction between Mc1r and met signaling pathways is required for HGFdependent melanoma. Int J Cancer. 2015;136(4):752–60. Available from:.  https://doi.org/10.1002/ijc.29050.CrossRefPubMedGoogle Scholar
  168. 168.
    Grabacka M, Wieczorek J, Michalczyk-Wetula D, Malinowski M, Wolan N, Wojcik K, Plonka PM. Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells. Arch Dermatol Res. 2017;309(3):141–57. Available from:.  https://doi.org/10.1007/s00403-016-1711-2.CrossRefPubMedGoogle Scholar
  169. 169.
    Lund LP, Timmins GS. Melanoma, long wavelength ultraviolet and sunscreens: controversies and potential resolutions. Pharmacol Ther. 2007;114(2):198–207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17376535 PubMedCrossRefGoogle Scholar
  170. 170.
    Godechal Q, Gallez B. The contribution of electron paramagnetic resonance to melanoma research. J Skin Cancer. 2011;2011:E273280. (1-6). Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3176523&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  171. 171.
    Godechal Q, Ghanem GE, Cook MG, Gallez B. Electron paramagnetic resonance spectrometry and imaging in melanomas: comparison between pigmented and nonpigmented human malignant melanomas. Mol Imaging. 2013;12(4):218–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23651499 PubMedCrossRefGoogle Scholar
  172. 172.
    Okazaki M, Kuwata K, Miki Y, Shiga S, Shiga T. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance. Arch Biochem Biophys. 1985;242(1):197–205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2996430 PubMedCrossRefGoogle Scholar
  173. 173.
    Godechal Q, Mignion L, Karroum O, Magat J, Danhier P, Morandini R, Ghanem GE, Leveque P, Gallez B. Influence of paramagnetic melanin on the MRI contrast in melanoma: a combined high-field (11.7 T) MRI and EPR study. Contrast Media Mol Imaging. 2014;9(2):154–60. Available from:.  https://doi.org/10.1002/cmmi.1554.CrossRefPubMedGoogle Scholar
  174. 174.
    Cesareo E, Korkina L, D’Errico G, Vitiello G, Aguzzi MS, Passarelli F, Pedersen JZ, Facchiano A. An endogenous electron spin resonance (ESR) signal discriminates nevi from melanomas in human specimens: a step forward in its diagnostic application. PLoS One. 2012;7(11):e48849. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23144997 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Ito S, Jimbow K. Quantitative Analysis of Eumelanin and Pheomelanin in Hair and Melanomas. J Invest Dermatol. 1983;80(4):268–72. Available from: https://www.ncbi.nlm.nih.gov/pubmed/6833784 PubMedCrossRefGoogle Scholar
  176. 176.
    Łukiewicz SJ, Łukiewicz S. In vivo ESR spectroscopy of pigmented Tumors in mice. In:The XIIth international pigment cell conference. Giessen: University of Giessen Press; 1983. p. 133.Google Scholar
  177. 177.
    Berliner LJ, Fujii H, Wan XM, Łukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med. 1987;4(4):380–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3035320 PubMedCrossRefGoogle Scholar
  178. 178.
    Vanea E, Charlier N, Dewever J, Dinguizli M, Feron O, Baurain JF, Gallez B. Molecular electron paramagnetic resonance imaging of melanin in melanomas: a proof-of-concept. NMR Biomed. 2008;21(3):296–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18246539 PubMedCrossRefGoogle Scholar
  179. 179.
    Wolnicka-Glubisz A, Nogal K, Żądło A, Płonka PM. Curcumin does not switch melanin synthesis towards pheomelanin in B16F10 cells. Arch Dermatol Res. 2015;307(1):89–98. Available from: http://link.springer.com/10.1007/s00403-014-1523-1 PubMedCrossRefGoogle Scholar
  180. 180.
    Łukiewicz SJ, Pilas B. A new method of measuring oxygenation in pigmented Tumors growing in situ. In:III European workshop on melanin pigmentation. Prague, Czechoslovakia. Prague: Charles University; 1981. p. 65.Google Scholar
  181. 181.
    Romanowska-Dixon B, Elas M, Swakoń J, Sowa U, Ptaszkiewicz M, Szczygieł M, Krzykawska M, Olko P, Urbańska K. Metastasis inhibition after proton beam, β - and γ-irradiation of melanoma growing in the hamster eye. Acta Biochim Pol. 2013;60(3):307–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23819130 PubMedGoogle Scholar
  182. 182.
    Plonka PM, Michalczyk D, Popik M, Handjiski B, Slominski A, Paus R. Splenic eumelanin differs from hair eumelanin in C57BL/6 mice. Acta Biochim Pol. 2005;52(2):433–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15990923 PubMedGoogle Scholar
  183. 183.
    Michalczyk-Wetula D, Wieczorek J, Płonka PM. Splenic melanosis in agouti and black mice. Acta Biochim Pol. 2015;62(3):457–63. Available from: http://www.actabp.pl/#File?./html/3_2015/2015_1053.html PubMedCrossRefGoogle Scholar
  184. 184.
    Michalczyk-Wetula D, Salwiński A, Popik MM, Jakubowska M, Płonka PM. Splenic melanosis during normal murine C57BL/6 hair cycle and after chemotherapy. Acta Biochim Pol. 2013;60(3):313–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23828776 PubMedGoogle Scholar
  185. 185.
    Weissman I. Genetic and histochemical studies on mouse spleen black spots. Nature. 1967;215(5098):315. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6059528 PubMedCrossRefGoogle Scholar
  186. 186.
    Płonka PM. Hair pigmentation disorders or 50 years of German-polish alliance for study on a severe side effect of chemotherapy: Kostanecki’s legacy. Exp Dermatol. 2015;24(1):10–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25279945 PubMedCrossRefGoogle Scholar
  187. 187.
    Fernández E, Barba C, Alonso C, Martí M, Parra JL, Coderch L. Photodamage determination of human hair. J Photochem Photobiol B Biol. 2012;106(1):101–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22119660 CrossRefGoogle Scholar
  188. 188.
    Saner MV, Kulkarni AD, Pardeshi CV. Insights into drug delivery across the nail plate barrier. J Drug Target. 2014;22(9):769–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24964054 PubMedCrossRefGoogle Scholar
  189. 189.
    Laule C, Tahir S, Chia CLL, Vavasour IM, Kitson N, MacKay AL. A proton NMR study on the hydration of normal versus psoriatic stratum corneum: linking distinguishable reservoirs to anatomical structures. NMR Biomed. 2010;23(10):1181–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20665901 PubMedCrossRefGoogle Scholar
  190. 190.
    Sobchak C, Eder L. Cardiometabolic disorders in psoriatic disease. Curr Rheumatol Rep. 2017;19(10):63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28844116 PubMedCrossRefGoogle Scholar
  191. 191.
    Pietrzak A, Bartosińska J, Chodorowska G, Szepietowski JC, Paluszkiewicz P, Schwartz RA. Cardiovascular aspects of psoriasis: an updated review. Int J Dermatol. 2013;52(2):153–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23347301 PubMedCrossRefGoogle Scholar
  192. 192.
    Górnicki A, Gutsze A. Erythrocyte membrane fluidity changes in psoriasis: an EPR study. J Dermatol Sci. 2001;27(1):27–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11457641 PubMedCrossRefGoogle Scholar
  193. 193.
    Górnicki A, Gutsze A. In vivo and in vitro influence of etretinate on erythrocyte membrane fluidity. Eur J Pharmacol. 2001;423(2–3):127–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11448476 PubMedCrossRefGoogle Scholar
  194. 194.
    Górnicki A. Domain structure of erythrocyte membranes in psoriasis: an EPR study. J Dermatol Sci. 2002;29(3):214–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12234712 PubMedCrossRefGoogle Scholar
  195. 195.
    Olczyk P, Ramos P, Bernas M, Komosinska-Vassev K, Stojko J, Pilawa B. Microwave saturation of complex EPR spectra and free radicals of burnt skin treated with Apitherapeutic agent. Evid Based Complement Alternat Med. 2013;2013:E545201. (1-9). Available from: http://www.ncbi.nlm.nih.gov/pubmed/23781263 Google Scholar
  196. 196.
    Petukhov VI, Baumane LK, Reste ED, Zvagule TY, Romanova MA, Shushkevich NI, Sushkova LT, Skavronsky SV, Shchukov AN. Diagnosis of nitrosative stress by quantitative EPR-spectroscopy of epidermal cells. Bull Exp Biol Med. 2013;154(6):734–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23658910 PubMedCrossRefGoogle Scholar
  197. 197.
    Liu KJ, Mäder K, Shi X, Swartz HM. Reduction of carcinogenic chromium(VI) on the skin of living rats. Magn Reson Med. 1997;38(4):524–6. Available from: http://doi.wiley.com/10.1002/mrm.1910380403 PubMedCrossRefGoogle Scholar
  198. 198.
    Tosta FV, Andrade LM, Mendes LP, Anjos JLV, Alonso A, Marreto RN, Lima EM, Taveira SF. Paclitaxel-loaded lipid nanoparticles for topical application: the influence of oil content on lipid dynamic behavior, stability, and drug skin penetration. J Nanopart Res. 2014;16(12):2782. Available from:.  https://doi.org/10.1007/s11051-014-2782-7.CrossRefGoogle Scholar
  199. 199.
    Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S174801321400053X PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Fujimoto T, Ito S, Ito M, Kanazawa H, Yamaguchi S. Induction of different reactive oxygen species in the skin during various laser therapies and their inhibition by fullerene. Lasers Surg Med. 2012;44(8):685–94. Available from: http://doi.wiley.com/10.1002/lsm.22065 PubMedCrossRefGoogle Scholar
  201. 201.
    Haag SF, Chen M, Peters D, Keck CM, Taskoparan B, Fahr A, Teutloff C, Bittl R, Lademann J, Schäfer-Korting M, Meinke MC. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy. Int J Pharm. 2011;421(2):364–9. Available from:.  https://doi.org/10.1016/j.ijpharm.2011.10.009.CrossRefPubMedGoogle Scholar
  202. 202.
    Carlotti ME, Ugazio E, Sapino S, Fenoglio I, Greco G, Fubini B. Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radic Res. 2009;43(3):312–22. Available from: http://www.tandfonline.com/doi/full/10.1080/10715760802716633 PubMedCrossRefGoogle Scholar
  203. 203.
    Yeom S, Shin BS, Han S. An electron spin resonance study of non-ionic surfactant vesicles (niosomes). Chem Phys Lipids. 2014;181:83–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0009308414000425 PubMedCrossRefGoogle Scholar
  204. 204.
    Konkin A, Ritter U, Scharff P, Mamin G, Aganov A, Orlinskii S, Krinichnyi V, Egbed DAM, Ecke G, Romanusa H. Multifrequency X,W-band ESR study on photo-induced ion radical formation in solid films of mono- and di-fullerenes embedded in conjugated polymers. Carbon. 2014;77:11–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0008622314003947 CrossRefGoogle Scholar
  205. 205.
    Olczyk P, Komosinska-Vassev K, Ramos P, Mencner Ł, Olczyk K, Pilawa B. Application of numerical analysis of the shape of electron paramagnetic resonance spectra for determination of the number of different groups of radicals in the burn wounds. Oxidative Med Cell Longev. 2017;2017:1–8. Article ID 4683102 Available from: https://www.hindawi.com/journals/omcl/2017/4683102/ CrossRefGoogle Scholar
  206. 206.
    Makarova K, Zawada K, Wagner D, Skowyra J. Optimization of antioxidant properties of creams with berry extracts by artificial neural networks. Acta Phys Pol A. 2017;132(1):44–51. Available from: http://przyrbwn.icm.edu.pl/APP/PDF/132/app132z1p09.pdf CrossRefGoogle Scholar
  207. 207.
    Lohan SB, Saeidpour S, Solik A, Schanzer S, Richter H, Dong P, Darvin ME, Bodmeier R, Patzelt A, Zoubari G, Unbehauen M, Haag R, Lademann J, Teutloff C, Bittl R, Meinke MC. Investigation of the cutaneous penetration behavior of dexamethasone loaded to nano-sized lipid particles by EPR spectroscopy, and confocal Raman and laser scanning microscopy. Eur J Pharm Biopharm. 2017;116:102–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0939641116310220 PubMedCrossRefGoogle Scholar
  208. 208.
    Pawlikowska-Pawlęga B, Misiak LE, Zarzyka B, Paduch R, Gawron A, Gruszecki WI. FTIR, 1H NMR and EPR spectroscopy studies on the interaction of flavone apigenin with dipalmitoylphosphatidylcholine liposomes. Biochim Biophys Acta. 2013;1828(2):518–27. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0005273612003628 PubMedCrossRefGoogle Scholar
  209. 209.
    Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. Contrast Media Mol Imaging. 2015;10(4):266–81. Available from: http://doi.wiley.com/10.1002/cmmi.1630 PubMedCrossRefGoogle Scholar
  210. 210.
    Hochkirch U, Herrmann W, Stößer R, Linscheid M, Borchert H-H. Distribution profiles of nitroxide spin probes in human skin—a combined study using spatially resolved electron spin resonance spectroscopy and mass spectrometry. Anal Bioanal Chem. 2011;401(3):901–7. Available from: http://link.springer.com/10.1007/s00216-011-5150-9 PubMedCrossRefGoogle Scholar
  211. 211.
    Dragicevic-Curic N, Friedrich M, Petersen S, Scheglmann D, Douroumis D, Plass W, Fahr A. Assessment of fluidity of different invasomes by electron spin resonance and differential scanning calorimetry. Int J Pharm. 2011;412(1–2):85–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21527323 PubMedCrossRefGoogle Scholar
  212. 212.
    Sidabras JW, Varanasi SK, Mett RR, Swarts SG, Swartz HM, Hyde JS. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces. Rev Sci Instrum. 2014;85(10):104707. Available from: http://aip.scitation.org/doi/10.1063/1.4898179 PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Petryakov S, Samouilov A, Chzhan-Roytenberg M, Kesselring E, Sun Z, Zweier JL. Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz. J Magn Reson. 2009;198(1):8–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1090780708004205 PubMedCrossRefGoogle Scholar
  214. 214.
    Wolfson H, Ahmad R, Twig Y, Kuppusamy P, Blank A. A miniature electron spin resonance probehead for transcutaneous oxygen monitoring. Appl Magn Reson. 2014;45(10):955–67. Available from:.  https://doi.org/10.1007/s00723-014-0593-8.CrossRefGoogle Scholar
  215. 215.
    Nakagawa K, Ohba Y, Epel B, Hirata H. A 9 GHz EPR imager for thin materials: application to surface detection. J Oleo Sci. 2012;61(8):451–6. Available from: http://jlc.jst.go.jp/DN/JST.JSTAGE/jos/61.451?lang=en&from=CrossRef&type=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Enomoto A, Hirata H. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: proof-of-concept experiments. J Magn Reson. 2014;239:29–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1090780713003133 PubMedCrossRefGoogle Scholar
  217. 217.
    Asada R, Kageyama K, Tanaka H, Matsui H, Kimura M, Saitoh Y, Miwa N. Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death. Oncol Rep. 2010;24(6):1463–70. Available from: http://www.spandidos-publications.com/or/24/6/1463 PubMedGoogle Scholar
  218. 218.
    Tada K, Maeda M, Nishiuchi Y, Nagahara J, Hata T, Zhuowei Z, Yoshida Y, Watanabe M, Ohmori M. ESR measurement of hydroxyl radicals in micro-nanobubble water. Chem Lett. 2014;43(12):1907–8. Available from: http://www.journal.csj.jp/doi/10.1246/cl.140691 CrossRefGoogle Scholar
  219. 219.
    Orel VB, Zabolotny MA, Orel VE. Heterogeneity of hypoxia in solid tumours and mechanochemical reactions with oxygen nanobubbles. Med Hypotheses. 2017;102:82–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0306987716305758 PubMedCrossRefGoogle Scholar
  220. 220.
    Drzał A, Delalande A, Pichon C, Elas M. Oxygen release by ultrasound sensitive O2 microbubbles in solution and in vivo: temporal study. In: International Conference on Electron Paramagnetic Resonance Spectroscopy and Imaging of Biological Systems (EPR-2017), Morgantown, Virginia; July 16–22 2017. p. 56.Google Scholar
  221. 221.
    Demidenko E, Williams BB, Sucheta A, Dong R, Swartz HM. Radiation dose reconstruction from L-band in vivo EPR spectroscopy of intact teeth: comparison of methods. Radiat Meas. 2007;42(6–7):1089–98. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18591987 PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Fuchs J, Groth N, Herrling T, Packer L. In vivo Electron spin resonance imaging of skin. Methods Enzymol. 1994;233:140–9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8015452 PubMedCrossRefGoogle Scholar
  223. 223.
    Napolitano A, Panzella L, Monfrecola G, D’Ischia M. Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res. 2014;27(5):721–33. Available from: http://doi.wiley.com/10.1111/pcmr.12262 PubMedCrossRefGoogle Scholar
  224. 224.
    Brożyna AA, Van Middlesworth L, Slominski AT. Inhibition of melanogenesis as a radiation sensitizer for melanoma therapy. Int J Cancer. 2008;123(6):1448–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18567001 PubMedCrossRefGoogle Scholar
  225. 225.
    Maresca V, Flori E, Picardo M. Skin phototype: a new perspective. Pigment Cell Melanoma Res. 2015;28(4):378–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25786343 PubMedCrossRefGoogle Scholar
  226. 226.
    d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron JC, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T, Simon JD, Ito S. Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res. 2013;26(5):616–33. Available from:.  https://doi.org/10.1111/pcmr.12121.CrossRefGoogle Scholar
  227. 227.
    Sealy RC, Hyde JS, Felix CC, Menon IA, Prota G. Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy. Science. 1982;217(4559):545–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6283638 PubMedCrossRefGoogle Scholar
  228. 228.
    Vsevolodov EB, Ito S, Wakamatsu K, Kuchina II, Latypov IF. Comparative analysis of hair melanins by chemical and electron spin resonance methods. Pigment Cell Res. 1991;4(1):30–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1656423 PubMedCrossRefGoogle Scholar
  229. 229.
    Gordy W, Ard WB, Shields H. Microwave spectroscopy of biological substances. I. Paramagnetic resonance in X-irradiated amino acids and proteins. Proc Natl Acad Sci U S A. 1955;41(11):983–96. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.41.11.983 PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Harriman JE. Theoretical foundations of electron spin resonance: physical chemistry: a series of monographs. New York-San Francisco-London: Academic Press; 1978. p. 1–399. Available from: https://books.google.pl/books?id=Q7M3BQAAQBAJ&pg=PR3&lpg=PR3&dq=John+E.+Harriman.+Theoretical+Foundations+of+Electron+Spin+Resonance:+Physical+Chemistry:+A+Series+of+Monographs.+Academic+Press,+New+York-San+Francisco-London+1978&source=bl&ots=hc21itaBa7&s CrossRefGoogle Scholar
  231. 231.
    Herrling T, Jung K. The radical status factor (RSF): a novel metric to characterize skin products. Int J Cosmet Sci. 2012;34(4):285–90. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22563768 PubMedCrossRefGoogle Scholar
  232. 232.
    Brożyna AA, Jóźwicki W, Roszkowski K, Filipiak J, Slominski AT. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget. 2016;7(14):17844–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26910282 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Martyna Krzykawska-Serda
    • 1
  • Dominika Michalczyk-Wetula
    • 1
  • Przemysław M. Płonka
    • 1
    Email author
  1. 1.Department of Biophysics, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland

Personalised recommendations