Advertisement

Breakthrough Curve Modelling of ZSM-5 Zeolite Packed Fixed-Bed Columns for the Removal of MTBE

  • Yunhui Zhang
  • Fei Jin
  • Zhengtao Shen
  • Rod Lynch
  • Abir Al-Tabbaa
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

ZSM-5, as a hydrophobic zeolite, has a good adsorption capacity for MTBE in batch adsorption studies. This study explores the potential of ZSM-5 as an adsorbent for MTBE in a laboratory scale fixed-bed column study. A series of column tests were carried out to determine the breakthrough curves and evaluate the adsorption performance at different bed lengths. Logit method, Adams-Bohart model, Yoon and Nelson model and Dose-Response model were applied to fit the experimental data in order to predict the breakthrough curves and determine the adsorption kinetics of MTBE onto ZSM-5 in the fixed-bed columns. Dose-Response model was found to best describe the breakthrough curves and the maximum adsorption capacity increased with the increase of bed length. In addition, ZSM-5 can be thermally regenerated at 80 °C and the MTBE removal percentage still remained at >85% after 4 regeneration cycles.

Keywords

MTBE ZSM-5 Fixed-bed column tests Adsorption Breakthrough curve 

References

  1. Abu-Lail L, Bergendahl JA, Thompson RW (2010) Adsorption of methyl tertiary butyl ether on granular zeolites: batch and column studies. J Hazard Mater 178:363–369.  https://doi.org/10.1016/j.jhazmat.2010.01.088CrossRefGoogle Scholar
  2. Cabrera-Lafaurie WA, Roman FR, Hernandez-Maldonado AJ (2015) Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds. J Hazard Mater 282:174–182.  https://doi.org/10.1016/jjhazmat.2014.03.009CrossRefGoogle Scholar
  3. Calero M, Hernainz F, Blazquez G et al (2009) Study of Cr (III) biosorption in a fixed-bed column. J Hazard Mater 171:886–893.  https://doi.org/10.1016/jjhazmat.2009.06.082CrossRefGoogle Scholar
  4. Garcia-Mateos FJ, Ruiz-Rosas R, Marques MD et al (2015) Removal of paracetamol on biomass- derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem Eng J 279:18–30.  https://doi.org/10.1016/j.cej.2015.04.144CrossRefGoogle Scholar
  5. Goel J, Kadirvelu K, Rajagopal C et al (2005) Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater 125:211–220.  https://doi.org/10.1016/jjhazmat.2005.05.032CrossRefGoogle Scholar
  6. Hou D, Al-Tabbaa A, Luo J (2014) Assessing effects of site characteristics on remediation secondary life cycle impact with a generalised framework. J Environ Plann Manag 57:1083–1100.  https://doi.org/10.1080/09640568.2013.863754CrossRefGoogle Scholar
  7. Jha B, Singh DN (2016) Fly Ash Zeolites. Advanced Structured Materials. Springer, Singapore.  https://doi.org/10.1007/978-981-10-1404-8CrossRefGoogle Scholar
  8. Levchuk I, Bhatnagar A, Sillanpaa M (2014) Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci Total Environ 476:415–433.  https://doi.org/10.1016/j.scitotenv.2014.01.037CrossRefGoogle Scholar
  9. Lindsey BD, Ayotte JD, Jurgens BC et al (2017) Using groundwater age distributions to understand changes in methyl tert-butyl ether (MtBE) concentrations in ambient groundwater, northeastern United States. Sci Total Environ 579:579–587.  https://doi.org/10.1016/j.scitotenv.2016.11.058CrossRefGoogle Scholar
  10. Mancini ER, Steen A, Rausina GA et al (2002) MTBE ambient water quality criteria development: a public/private partnership. Environ Sci Technol.  https://doi.org/10.1021/es002059bCrossRefGoogle Scholar
  11. Masad E, Taha R, Ho C et al (1996) Engineering properties of tire/soil mixtures as a lightweight fill material. Geotech Test J 19:297–304.  https://doi.org/10.1520/gtj10355jCrossRefGoogle Scholar
  12. Mohebali S (2013) Degradation of methyl t-butyl ether (MTBE) by photochemical process in nanocrystalline TiO2 slurry: mechanism, by-products and carbonate ion effect. J Environ Chem Eng 1:1070–1078.  https://doi.org/10.1016/j.jece.2013.08.022CrossRefGoogle Scholar
  13. Salman J, Njoku V, Hameed B (2011) Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem Eng J 174(1):33–40CrossRefGoogle Scholar
  14. Yan G, Viraraghavan T, Chen M (2001) A new model for heavy metal removal in a biosorption column. Adsorpt Sci Technol 19:25–43CrossRefGoogle Scholar
  15. Zhang Y, Jin F, Shen Z et al (2018) Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: batch and column studies. J Hazard Mater 347:461–469.  https://doi.org/10.1016/J.JHAZMAT.2018.01.007CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yunhui Zhang
    • 1
  • Fei Jin
    • 2
  • Zhengtao Shen
    • 3
  • Rod Lynch
    • 1
  • Abir Al-Tabbaa
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.School of EngineeringUniversity of GlasgowGlasgowUK
  3. 3.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations