Advertisement

Workflows in Environmental Geotechnics: Status-Quo and Perspectives

  • Olaf KolditzEmail author
  • Uwe-Jens Gorke
  • Haibing Shao
  • Hua Shao
  • Thomas Nagel
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Environmental systems are complex. For unravelling this complexity both observation and modelling concepts are being developed and applied - still and mostly in independent ways. Developing and establishing continuous workflows in environmental systems analysis integrating observation as well as modelling aspects shall help overcoming this disparity. In this paper we present basic concepts of technical workflow development in geosciences and show examples from different applications in geotechnics. Technical workflows combine data integration, numerical simulation and data analysis and therefore support the modelling process. Benchmarking is an essential tool for proving complex workflows, e.g., the consistency between experimental work and process modelling.

Keywords

Environmental Geotechnics Workflows OpenGeoSys 

References

  1. 1.
    Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. WileyGoogle Scholar
  2. 2.
    Ehlers W, Bluhm J (2002) Porous media: theory, experiments and numerical applications. Springer, HeidelbergCrossRefGoogle Scholar
  3. 3.
    Stephansson O, Hudson J, Jing L (2004) Coupled thermo-hydro-mechanical-chemical processes in geo-systems fundamentals, modelling, experiments and applications. Elsevier Geo-Engineering Book Series, vol 2Google Scholar
  4. 4.
    Schanz T (2005) Unsaturated soils: numerical and theoretical approaches. Springer, HeidelbergGoogle Scholar
  5. 5.
    Kolditz O, Nagel T, Shao H, Wang W, Bauer S (2016) Thermo-hydro-mechanical- chemical processes in fractured porous media: modelling and benchmarking - benchmarking initiatives. Terrestrial environmental sciences, vol 3. Springer, Heidelberg, p 260Google Scholar
  6. 6.
    Kolditz O, Nagel T, Shao H, Wang W, Bauer S (2018) Thermo-hydro-mechanical- chemical processes in fractured porous media: modelling and benchmarking - from benchmarking to tutoring. Terrestrial environmental sciences, vol 4. Springer, Heidelberg, p 301Google Scholar
  7. 7.
    Nagel T, Bottcher N, Gorke U-J, Kolditz O (2017) Computational geotechnics I - storage of energy carriers. In: Nagel T, Shao H (eds) Computational modeling of energy systems, vol 1, 1st edn. Springer, New York, p 120Google Scholar
  8. 8.
    Lehmann C, Kolditz O, Nagel T (2017) Models of thermochemical heat storage. In: Nagel T, Shao H (eds) Computational modeling of energy systems, vol 1, 1st edn. Springer, New York, p 100Google Scholar
  9. 9.
    Kolditz O, Rink K, Shao H, Kalbacher T, Zacharias S, Dietrich P (2012) International viewpoint and news: Data and modelling platforms in environmental earth sciences. Environ Earth Sci 66(4):1279–1284.  https://doi.org/10.1007/s12665-012-1661-8CrossRefGoogle Scholar
  10. 10.
    Fischer T, Naumov D, Sattler S, Kolditz O, Walther M (2015) Go2ogs 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models. Geosci Model Dev 8(11):3681–3694.  https://doi.org/10.5194/gmd-8-3681-2015CrossRefGoogle Scholar
  11. 11.
    Kalbacher T, Wang W, McDermott C, Kolditz O, Taniguchi T (2005) Development and application of a cad interface for fractured rock. Environ Geol 47(7):1017–1027.  https://doi.org/10.1007/s00254-005-1236-zCrossRefGoogle Scholar
  12. 12.
    Kalbacher T, Mettier R, McDermott C, Wang W, Kosakowski G, Taniguchi T, Kolditz O (2007) Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the grimsel rock laboratory. Comput Geosci 11(1):9–26.  https://doi.org/10.1007/s10596-006-9032-8CrossRefzbMATHGoogle Scholar
  13. 13.
    Sachse A, Rink K, He W, Kolditz O (2015) OpenGeoSys-tutorial: computational hydrology I: groundwater flow modeling. Springer, Heidelberg http://www.springer.com/de/book/9783319133348Google Scholar
  14. 14.
    Sachse A, Nixdorf E, Jang E, Rink K, Fischer T, Xi B, Beyer C, Bauer S, Walther M, Sun Y, Song Y (2017) OpenGeoSys-tutorial: computational hydrology II: groundwater quality modeling. Springer, Heidelberg http://www.springer.com/us/book/9783319528083Google Scholar
  15. 15.
    Kolditz O, Bauer S, Bilke L, Fischer T, Gorke U-J, Graupner B, Nagel T, Naumov D, Lu R, Shao H, Wang W, Watanabe H, McDermott C, Shao H: Decovalex: opengeosys contributions. J Rock Mech Geotech Eng (submitted)Google Scholar
  16. 16.
    Nagel T, Beckert S, Lehmann C, Glaser R, Kolditz O (2016) Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds - a review. Appl Energy 178:323–345.  https://doi.org/10.1016/j.apenergy.2016.06.051CrossRefGoogle Scholar
  17. 17.
    Cacace M, Blocher G (2015) Meshit - a software for three dimensional volumetric meshing of complex faulted reservoirs. Environ Earth Sci 74(6):5191–5209.  https://doi.org/10.1007/s12665-015-4537-xCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Olaf Kolditz
    • 1
    • 2
    Email author
  • Uwe-Jens Gorke
    • 1
  • Haibing Shao
    • 1
    • 3
  • Hua Shao
    • 4
  • Thomas Nagel
    • 1
    • 5
  1. 1.Helmholtz Centre for Environmental Research - UFZLeipzigGermany
  2. 2.Dresden University of TechnologyDresdenGermany
  3. 3.Freiberg University of TechnologyFreibergGermany
  4. 4.Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  5. 5.Trinity College DublinDublinIreland

Personalised recommendations