A Rheological Approach for the Evaluation of Geotechnical Use of Water Treatment Sludge

  • Juliana K. TsugawaEmail author
  • Roberto C. de O. Romano
  • Rafael G. Pileggi
  • Maria Eugenia G. Boscov
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Demand on freshwater tends to increase in the next years; consequently, the production of water treatment sludge (WTS) shall increase as well. Beneficial reuse of WTS as a geotechnical material may be an important strategy to reduce the environmental impacts due to improper WTS disposal. However, even after dewatering WTS consistency is closer to fluids rather than soils. Aiming to the reuse of WTS at considerable amounts, the incorporation of additives to stabilize WTS may be an interesting alternative in the future. For this purpose, the knowledge of rheological characteristics of WTS in fresh state is mandatory. This paper presents a brief about viscoelasticity and rheology concepts, preliminary results of WTS rheological behavior, and two different methods, rotational rheometry and laboratorial miniature Vane test, to evaluate WTS behavior. Rheological tests indicated that Cubatão WTS presents shear thinning behavior at low shear rate, shear thickening at high shear rate, and suggested thixotropic behaviour at low shear rates. Rotational rheometry may be a powerful tool to characterize rheological behavior of WTS, since is very fast method, adapted to pastes and fluids, and can be applied to different conditions of solicitation. Vane test is limited to high water content materials, and higher quantities of sample is needed, but is standardized, and a minimum disturbance of sample occurs. Both methods may be appropriated to characterize WTS and the choosing of the best method depends on the research purpose.


Water treatment sludge reuse Rheology and rheometry Viscoelasticity and thixotropy 



The authors are grateful to the State of São Paulo Research Foundation – FAPESP (Project 2013/50448-8) and the Basic Sanitation Company of the State of Sao Paulo – SABESP for sponsoring this research project, the Brazilian National Council of Scientific and Technological Development - CNPq for granted a Ph.D. scholarship and Laboratory of Microstructure and Ecoefficiency in Materials for the support to carry out the rheological tests.


  1. 1.
    United Union (2017) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100.
  2. 2.
    UN-Water (2015) Wastewater management: a UN-water analytical brief, p. 54.
  3. 3.
    WWAP (United Nations World Water Assessment Programe) (2012) The United Nations World Water Development Report 4. Managing Water under Uncertainty and Risk. UNESCO, Paris.
  4. 4.
    Rodriguez TT, Teixeira RS, Fernandes F, Junior OMO, Martins FB, Komori ET et al (2011) Estudo da compactação de lodo de ETA para uso em aterros sanitários. In: Anais do VII Congresso Brasileiro de Geotecnia Ambiental e VI Simpósio Brasileiro de Geossintéticos REGEO/Geossintéticos. Belo Horizonte-MGGoogle Scholar
  5. 5.
    Basim SC (1999) Physical and geotechnical characterization of water treatment plant residuals. New Jersey Institute of TechnologyGoogle Scholar
  6. 6.
    Hsieh HN, Raghu D (1997) Criteria development for water treatment plant residual monofill. AWWA - American Water Works Association, 203 pGoogle Scholar
  7. 7.
    Xia Z (1994) Geotechnical characterization of water treatment plant residuals. New Jersey Institute of TechnologyGoogle Scholar
  8. 8.
    Hoppen C, Portella KF, Joukoski A, Baron O, Franck R, Sales A et al (2005) Co-disposição de lodo centrifugado de Estação de Tratamento de Água (ETA) em matriz de concreto: método alternativo de preservação ambiental. Cerâmica 51:85–95CrossRefGoogle Scholar
  9. 9.
    Hoppen C, Portella KF, Andreoli CV, Sales A, Joukoski A (2005) Estudo de dosagem para incorporaçãoo do lodo de ETA em matriz de concreto, como forma de disposição final. In: 23o Congresso Brasileiro de Engenharia Sanitária e Ambiental. ABES - Associação Brasileira de Engenharia Sanitária e AmbientalGoogle Scholar
  10. 10.
    Oliveira EMS, Machado SQ, Holanda JNF (2004) Caracterização de resíduo (lodo) proveniente de estação de tratamento de águas visando sua utilização em cerâmica vermelha. Ceramica 50:324–330CrossRefGoogle Scholar
  11. 11.
    Teixeira SR, Santos GTA, Souza AE, Alessio P, Souza SA, Souza NR (2011) The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl Clay Sci 53(4):561–565. Scholar
  12. 12.
    Morita DM, Sampaio AO, Miki MK, David AC (2002) Incorporação de lodos de estações de tratamento de água em blocos cerâmicos. Rev Saneas 1(14):7–12Google Scholar
  13. 13.
    Chen H, Ma X, Dai H (2010) Reuse of water purification sludge as raw material in cement production. Cem Concr Compos 32(6):436–439. Scholar
  14. 14.
    da Silva JFA (2008) Comportamento de concreto asfáltico tendo lodo da ETA da cidade de Manaus como fíler. Faculdade de Tecnologia, Universidade do AmazonasGoogle Scholar
  15. 15.
    Raghu D, Hsieh H-N, Neilan T, Yih C-T (1987) Water treatment plant sludge as landfill liner. In: Geotechnical practice for waste disposal 1987: proceedings of a specialty conference. ASCE-American Society of Civil Engineers, pp 744–758Google Scholar
  16. 16.
    Wang MC, Hull Q, Jao M, Dempsey BA, Cornwell DA (1992) Engineering behavior of water treatment sludge. J Environ Eng 118(6):848–864CrossRefGoogle Scholar
  17. 17.
    Roque AJ, Carvalho M (2006) Possibility of using the drinking water sludge as geotechnical material. In: Telford T (ed.) Proceedings of the 5th international congress on environmental geotechnics. ASCE-American Society of Civil Engineers, London, pp 1535–1542Google Scholar
  18. 18.
    de Castilhos Junior A, Prim E, Pimentel F (2012) Utilização de lodo de ETA e ETE como material alternativo de cobertura de aterro sanitário. Estud Tecnológicos em Eng 7(2):86–97.
  19. 19.
    Montalvan ELT, Boscov MEG (2016) Geotechnical characterization of a soil-water treatment sludge mixture. In: Geo-Chicago. ASCE, Chicago, pp 418–427Google Scholar
  20. 20.
    O’Kelly BC (2008) Geotechnical properties of a municipal water treatment sludge incorporating a coagulant. Can Geotech J 45:715–725CrossRefGoogle Scholar
  21. 21.
    O’Kelly BC, Quille ME (2009) Compressibility and consolidation of water treatment residues. Proc Inst Civ Eng Waste Resour Manag 162(WR2):85–97Google Scholar
  22. 22.
    O’Kelly BC, Quille ME (2010) Shear strength properties of water treatment residues. Proc Inst Civ Eng - Geotech Eng 163(1):23–35 Scholar
  23. 23.
    Vandermeyden C, Cornwell DA (1998) Nonmechanical dewatering of water plant residuals. AWWA Research Foundation and American Water Works AssociationGoogle Scholar
  24. 24.
    Aydilek AH, Edil TB, Fox PJ (1999) Consolidation characteristics of wastewater sludge. Geotech High Water Content Mater 1374:309–323Google Scholar
  25. 25.
    Terzaghi K, Peck RB (1948) Soil mechanics in engineering practice. Wiley, New YorkGoogle Scholar
  26. 26.
    Malkin AY (1994) Rheology fundamentals. ChemTec Publishing, 324 pGoogle Scholar
  27. 27.
    Mitchell JK (1960) Fundamental aspects of thixotropy in soils. Proc Am Soc Civ Eng J Soil Mech Found Div 86(SM3):19–52Google Scholar
  28. 28.
    Tsugawa JK, Pereira KFS, Boscov MEG (2017) Thixotropy of sludge from the Cubatão water treatment plant, Brazil. In: Geotechnical frontiers. ASCE-American Society of Civil Engineers, Orlando, pp. 842–851Google Scholar
  29. 29.
    Skempton AW, Northey RD (1952) Sensitivity of clays. Geotechnique 3(1):30–53CrossRefGoogle Scholar
  30. 30.
    Jeong SW, Locat J, Torrance JK, Leroueil S (2015) Thixotropic and anti-thixotropic behaviors of fine-grained soils in various flocculated systems. Eng Geol 196:119–125 Scholar
  31. 31.
    Braga RMQL, Pinto CS, Boscov MEG (2006) Tixotropia em solos remoldados. Solos e Rochas 29(2):247–257Google Scholar
  32. 32.
    Seed HH, Chan CK (1957) Thixotropic characteristics of compacted clays. Proc Am Soc Civ Eng J Soil Mech Found Div 83(SM4):1427Google Scholar
  33. 33.
    Eshtiaghi N, Markis F, Yap SD, Baudez JC, Slatter P (2013) Rheological characterisation of municipal sludge: a review. Water Res 47(15):5493–5510. Scholar
  34. 34.
    Baudez JC (2008) Physical aging and thixotropy in sludge rheology. Appl Rheol 18(1):13495Google Scholar
  35. 35.
    Ratkovich N, Horn W, Helmus FP, Rosenberger S, Naessens W, Nopens I et al (2013) Activated sludge rheology: a critical review on data collection and modelling. Water Res 47(2):463–482. Scholar
  36. 36.
    Seyssiecq I, Ferrasse J, Roche N (2003) State-of-the-art: rheological characterisation of wastewater treatment sludge. Biochem Eng J 16:41–56CrossRefGoogle Scholar
  37. 37.
    Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148(C):214–227CrossRefGoogle Scholar
  38. 38.
    Nguyen DQ, Boger DV (1983) Yield stress measurement for concentrated suspensions. J Rheol 27:321–349CrossRefGoogle Scholar
  39. 39.
    AWWA (1978) Water treatment plant sludges: an update of the state of the art-Part 1. J Am Water Work Assoc (JAWWA) 70(9):498–503CrossRefGoogle Scholar
  40. 40.
    Mewis J (1979) Thixotropy - a general review. J Nonnewton Fluid Mech 6(1):1–20CrossRefGoogle Scholar
  41. 41.
    Tadros PT (2010) Rheology of dispersions, vol 44. Wiley-VCH Verlag GmbH & Co. KGaA, 199 pGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Juliana K. Tsugawa
    • 1
    Email author
  • Roberto C. de O. Romano
    • 2
  • Rafael G. Pileggi
    • 2
  • Maria Eugenia G. Boscov
    • 1
  1. 1.Department of Structural and Geotechnical EngineeringUniversity of São PauloSão PauloBrazil
  2. 2.Department of Civil EngineeringUniversity of São PauloSão PauloBrazil

Personalised recommendations