Small Angle Scattering and Structural Biology: Data Quality and Model Validation

  • Jill Trewhella
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1105)


This chapter provides a brief review of the current state-of-the-art in small-angle scattering (SAS) from biomolecules in solution in regard to: (1) sample preparation and instrumentation, (2) data reduction and analysis, and (3) three-dimensional structural modelling and validation. In this context, areas of ongoing research in regard to the interpretation of SAS data will be discussed with a particular focus on structural modelling using computational methods and data from different experimental techniques, including SAS (hybrid methods). Finally, progress made in establishing community accepted publication guidelines and a standard reporting framework that includes SAS data deposition in a public data bank will be described. Importantly, SAS data with associated meta-data can now be held in a format that supports exchange between data archives and seamless interoperability with the world-wide Protein Data Bank (wwPDB). Biomolecular SAS is thus well positioned to contribute to an envisioned federation of data archives in support of hybrid structural biology.


Small-angle scattering SAXS SANS Biomolecular structure Protein structure Modelling Data archive Publication guidelines 



The community building and developing of agreed publication guidelines for biomolecular SAS that are an important focus in this chapter was made possible by the collaborative spirit of colleagues who served with me for the past 12 years on the CSAS of the IUCr, the wwPDB SASvtf, and other colleagues around the world who contributed positively to achieve a consensus set of recommended guidelines. I especially wish to acknowledge: J. Mitchell Guss who with his editor’s hat on, first suggested to me the importance of writing down some guidelines that would be useful for editors and reviewers dealing with manuscripts containing biomolecular SAS data; David Jacques and Dmitri Svergun who joined Mitchell and I to co-author the preliminary publication guidelines; Wayne Hendrickson, Andrej Sali, Torsten Schwede and John Tainer who joined me in establishing the SASvtf to write the first report that expanded on the preliminary guidelines and recommended the establishment of a SAS data archive; Lois Pollack, Dina Schneidman-Duhovny, Masaaki Sugiyama, and Patrice Vachette who subsequently joined the SASvtf to review and update the preliminary guidelines; Anthony P. Duff, Dominique Durand, Frank Gabel, Greg L. Hura, Nigel M. Kirby, Ann H. Kwan, Javier Pérez, Timothy M. Ryan, John Westbrook, Andrew E. Whitten who joined the effort and contributed to our paper “2017 Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update.”


  1. Antonov LD, Olsson S, Boomsma W, Hamelryck T (2016) Bayesian inference of protein ensembles from SAXS data. Phys Chem Chem Phys PCCP 18:5832–5838CrossRefGoogle Scholar
  2. Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31:5269–5278CrossRefGoogle Scholar
  3. Berlin K, Castaneda CA, Schneidman-Duhovny D, Sali A, Nava-Tudela A, Fushman D (2013) Recovering a representative conformational ensemble from underdetermined macromolecular structural data. J Am Chem Soc 135:16595–16609CrossRefGoogle Scholar
  4. Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664CrossRefGoogle Scholar
  5. Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21:301–307CrossRefGoogle Scholar
  6. Bizien T, Durand D, Roblina P, Thureau A, Vachette P, Perez J (2016) A Brief Survey of State-of-the-Art BioSAXS. Protein Pept Lett 23:217–231CrossRefGoogle Scholar
  7. Blanchet CE, Spilotros A, Schwemmer F, Graewert MA, Kikhney A, Jeffries CM, Franke D, Mark D, Zengerle R, Cipriani F, Fiedler S, Roessle M, Svergun DI (2015) Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J Appl Crystallogr 48:431–443CrossRefGoogle Scholar
  8. Brennich ME, Round AR, Hutin S (2017) Online Size-exclusion and Ion-exchange Chromatography on a SAXS Beamline. J Vis ExpGoogle Scholar
  9. Brookes E, Vachette P, Rocco M, Perez J (2016) US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. J Appl Crystallogr 49:1827–1841CrossRefGoogle Scholar
  10. Burley SK, Kurisu G, Markley JL, Nakamura H, Velankar S, Berman HM, Sali A, Schwede T, Trewhella J (2017) PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Structure 25:1317–1318CrossRefGoogle Scholar
  11. David G, Perez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline. J Appl Crystallogr 42:892–900CrossRefGoogle Scholar
  12. Durand D, Vives C, Cannella D, Perez J, Pebay-Peyroula E, Vachette P, Fieschi F (2010) NADPH oxidase activator p67(phox) behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169:45–53CrossRefGoogle Scholar
  13. Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF (2009) The molecular weight of proteins in solution can be determined from a single SAXS measurement on a relative scale. J Appl Crystallogr 43:101–109CrossRefGoogle Scholar
  14. Franke D, Jeffries CM, Svergun DI (2015) Correlation Map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods 12:419–422CrossRefGoogle Scholar
  15. Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, Kikhney AG, Hajizadeh NR, Franklin JM, Jeffries CM, Svergun DI (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225CrossRefGoogle Scholar
  16. Gabel F (2015) Small-angle Neutron scattering for structural biology of Protein-RNA Complexes. Methods Enzymol 558:391–415CrossRefGoogle Scholar
  17. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  18. Glatter O (1977) A new method for the evaluation of small-angle scattering data. J Appl Crystallogr 10:307–315CrossRefGoogle Scholar
  19. Graewert MA, Franke D, Jeffries CM, Blanchet CE, Ruskule D, Kuhle K, Flieger A, Schafer B, Tartsch B, Meijers R, Svergun DI (2015) Automated pipeline for purification, biophysical and x-ray analysis of biomacromolecular solutions. Sci Rep 5:10734CrossRefGoogle Scholar
  20. Grishaev A, Wu J, Trewhella J, Bax A (2005) Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J Am Chem Soc 127:16621–16628CrossRefGoogle Scholar
  21. Grishaev A, Tugarinov V, Kay LE, Trewhella J, Bax A (2008) Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J Biomol NMR 40:95–106CrossRefGoogle Scholar
  22. Grishaev A, Guo L, Irving T, Bax A (2010) Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J Am Chem Soc 132:15484–15486CrossRefGoogle Scholar
  23. Grudinin S, Garkavenko M, Kazennov A (2017) Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles. Acta Crystallogr Sect D Struct Biol 73:449–464CrossRefGoogle Scholar
  24. Guinier A (1939) La diffraction des rayons x aux très faibles angles: Applications à l'etude de phénomènes ultra-microscopiques. Ann Phys Paris 12:161–237CrossRefGoogle Scholar
  25. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  26. Hammel M (2012) Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Eur Biophys J EBJ 41:789–799CrossRefGoogle Scholar
  27. Heidorn DB, Trewhella J (1988) Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27:909–915CrossRefGoogle Scholar
  28. Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, Sattler M (2014) Structural basis for the assembly of the Sxl-Unr translation regulatory complex. Nature 515:287–290CrossRefGoogle Scholar
  29. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916CrossRefGoogle Scholar
  30. Hershko A, Ciechanover A (1998) The ubiquitin system. Ann Rev Biochem 67:425–479CrossRefGoogle Scholar
  31. Huang JR, Warner LR, Sanchez C, Gabel F, Madl T, Mackereth CD, Sattler M, Blackledge M (2014) Transient electrostatic interactions dominate the conformational equilibrium sampled by multidomain splicing factor U2AF65: a combined NMR and SAXS study. J Am Chem Soc 136:7068–7076CrossRefGoogle Scholar
  32. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, 2nd, Tsutakawa SE, Jenney FE, Jr, Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD, Adams MW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–612CrossRefGoogle Scholar
  33. Improta S, Krueger JK, Gautel M, Atkinson RA, Lefevre JF, Moulton S, Trewhella J, Pastore A (1998) The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. J Mol Biol 284:761–777CrossRefGoogle Scholar
  34. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology–expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657CrossRefGoogle Scholar
  35. Jacques DA, Guss JM, Trewhella J (2012) Reliable structural interpretation of small-angle scattering data from bio-molecules in solution–the importance of quality control and a standard reporting framework. BMC Struct Biol 12:9CrossRefGoogle Scholar
  36. Jordan A, Jacques M, Merrick C, Devos J, Forsyth VT, Porcar L, Martel A (2016) SEC-SANS: size exclusion chromatography combined in situ with small-angle neutron scattering. J Appl Crystallogr 49:2015–2020CrossRefGoogle Scholar
  37. Kachala M, Westbrook J, Svergun D (2016) Extension of the sasCIF format and its applications for data processing and deposition. J Appl Crystallogr 49:302–310CrossRefGoogle Scholar
  38. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray Scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–2577CrossRefGoogle Scholar
  39. Kim HS, Gabel F (2015) Uniqueness of models from small-angle scattering data: the impact of a hydration shell and complementary NMR restraints. Acta Crystallogr Sect D Biol Crystallogr 71:57–66CrossRefGoogle Scholar
  40. Kim HS, Martel A, Girard E, Moulin M, Hartlein M, Madern D, Blackledge M, Franzetti B, Gabel F (2016) SAXS/SANS on supercharged proteins reveals residue-specific modifications of the hydration shell. Biophys J 110:2185–2194CrossRefGoogle Scholar
  41. Kim J, Masterson LR, Cembran A, Verardi R, Shi L, Gao J, Taylor SS, Veglia G (2015) Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc Natl Acad Sci USA 112:3716–3721PubMedGoogle Scholar
  42. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227CrossRefGoogle Scholar
  43. Kratky O (1982) Natural high polymers in the dissolved and solid state. In: Glatter O, Kratky O (eds) Small-angle X-ray scattering. Academic, London, pp 361–386Google Scholar
  44. Kruger M, Kotter S (2016) Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Front Physiol 7:76CrossRefGoogle Scholar
  45. Krzeminski M, Marsh JA, Neale C, Choy WY, Forman-Kay JD (2013) Characterization of disordered proteins with ENSEMBLE. Bioinformatics 29:398–399CrossRefGoogle Scholar
  46. Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519–523CrossRefGoogle Scholar
  47. Madl T, Gabel F, Sattler M (2011) NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 173:472–482CrossRefGoogle Scholar
  48. Malfois M, Svergun DI (2000) sasCIF: an extension of core Crystallographic Information File for SAS. J Appl Cryst 33:812–816CrossRefGoogle Scholar
  49. Mathew E, Mirza A, Menhart N (2004) Liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins. J Synchrotron Radiat 11:314–318CrossRefGoogle Scholar
  50. Mertens HDT, Svergun DI (2017) Combining NMR and small angle X-ray scattering for the study of biomolecular structure and dynamics. Arch Biochem Biophys 628:33–41CrossRefGoogle Scholar
  51. Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J Appl Cryst 33:218–225CrossRefGoogle Scholar
  52. Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189CrossRefGoogle Scholar
  53. Perry JJ, Cotner-Gohara E, Ellenberger T, Tainer JA (2010) Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 20:283–294CrossRefGoogle Scholar
  54. Poitevin F, Orland H, Doniach S, Koehl P, Delarue M (2011) AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res 39:W184–W189CrossRefGoogle Scholar
  55. Porod G (1951) Die Röntgenkleinwinkelstreung von dichtgepackten kolloidalen Systemen. Kolloid Z 124:83–114CrossRefGoogle Scholar
  56. Potrzebowski W, Trewhella J, Andre I (in press) Bayesian inference of protein conformational ensembles from limited structural data. PLOS Comput BiolGoogle Scholar
  57. Rambo RP, Tainer JA (2010) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 20:128–137CrossRefGoogle Scholar
  58. Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95:559–571CrossRefGoogle Scholar
  59. Round A, Felisaz F, Fodinger L, Gobbo A, Huet J, Villard C, Blanchet CE, Pernot P, McSweeney S, Roessle M, Svergun DI, Cipriani F (2015) BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments. Acta Crystallogr Sect D Biol Crystallogr 71:67–75CrossRefGoogle Scholar
  60. Rozycki B, Kim YC, Hummer G (2011) SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19:109–116CrossRefGoogle Scholar
  61. Ryan TM, Trewhella J, Murphy J, Keown JR, Casey L, Pearce FG, Goldstone DC, Chen K, Luo Z, Kobe B, McDevitt CA, Watkin SA, Hawley AM, Mudie ST, Samardzic-Boban V, Kirby N. (2017) An optimized SEC-SAXS system enabling high X-ray dose for rapid SAXS assessment with correlated UV measurements for biomolecular structure analysis. J Appl Cryst (in review)Google Scholar
  62. Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AM, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grunewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Johnson G, Lawson CL, Meiler J, Marti-Renom MA, Montelione GT, Nilges M, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schroder GF, Schwieters CD, Seidel CA, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD (2015) Outcome of the first wwPDB Hybrid/Integrative methods task force workshop. Structure 23:1156–1167CrossRefGoogle Scholar
  63. Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Struct Biol 12:17CrossRefGoogle Scholar
  64. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2013) Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105:962–974CrossRefGoogle Scholar
  65. Schneidman-Duhovny D, Pellarin R, Sali A (2014) Uncertainty in integrative structural modeling. Curr Opin Struct Biol 28:96–104CrossRefGoogle Scholar
  66. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2016) FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44:W424–W429CrossRefGoogle Scholar
  67. Schwieters CD, Clore GM (2014) Using small angle solution scattering data in Xplor-NIH structure calculations. Prog Nucl Magn Reson Spectrosc 80:1–11CrossRefGoogle Scholar
  68. Sonntag M, Jagtap PKA, Simon B, Appavou MS, Geerlof A, Stehle R, Gabel F, Hennig J, Sattler M (2017) Segmental, domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins. Angew Chem Int Ed Engl 56:9322–9325CrossRefGoogle Scholar
  69. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773CrossRefGoogle Scholar
  70. Svergun DI, Richard S, Koch MH, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. Proc Natl Acad Sci USA 95:2267–2272CrossRefGoogle Scholar
  71. Svergun DI, Koch MHJ, Timmins PA, May RP (2013) Small-angle X-ray and neutron scattering from biological macromolecules. Oxford University Press, OxfordCrossRefGoogle Scholar
  72. Taraban M, Zhan H, Whitten AE, Langley DB, Matthews KS, Swint-Kruse L, Trewhella J (2008) Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. J Mol Biol 376:466–481CrossRefGoogle Scholar
  73. Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280:5551–5565CrossRefGoogle Scholar
  74. Trewhella J (2016) Small-angle scattering and 3D structure interpretation. Curr Opin Struct Biol 40:1–7CrossRefGoogle Scholar
  75. Trewhella J, Hendrickson WA, Kleywegt GJ, Sali A, Sato M, Schwede T, Svergun DI, Tainer JA, Westbrook J, Berman HM (2013) Report of the wwPDB small-angle scattering task force: data requirements for biomolecular modeling and the PDB. Structure 21:875–881CrossRefGoogle Scholar
  76. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Pérez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE (2017) 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr Sect D Struct Biol 73:710–728CrossRefGoogle Scholar
  77. Tria G, Mertens HD, Kachala M, Svergun DI (2015) Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2:207–217CrossRefGoogle Scholar
  78. Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res 43:D357–D363CrossRefGoogle Scholar
  79. Vestergaard B (2016) Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue. Arch Biochem Biophys 602:69–79CrossRefGoogle Scholar
  80. Whitten AE, Cai SZ, Trewhella J (2008) MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. J Appl Crystallogr 41:222–226CrossRefGoogle Scholar
  81. Whitten AE, Trewhella J (2009) Small-angle scattering and neutron contrast variation for studying bio-molecular complexes. Methods Mol Biol 544:307–323CrossRefGoogle Scholar
  82. Zaccai G, Jacrot B (1983) Small angle neutron scattering. Annu Rev Biophys Bioeng 12:139–157CrossRefGoogle Scholar
  83. Zaccai NR, Sandlin CW, Hoopes JT, Curtis JE, Fleming PJ, Fleming KG, Krueger S (2016) Deuterium labeling together with contrast variation small-angle neutron scattering suggests how skp captures and releases unfolded outer membrane proteins. Methods Enzymol 566:159–210CrossRefGoogle Scholar
  84. Zhang F, Roosen-Runge F, Skoda MW, Jacobs RM, Wolf M, Callow P, Frielinghaus H, Pipich V, Prevost S, Schreiber F (2012) Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. Phys Chem Chem Phys PCCP 14:2483–2493CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Life and Environmental SciencesThe University of SydneyNSWAustralia
  2. 2.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations