Overall Introduction and Rationale, with View from Computational Biology

  • Haruki NakamuraEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1105)


By integrating the experimental information given from the Hybrid/ Integrative methods to determine the structures of large macromolecular machines, the static and dynamic molecular models in the atomic or semi-atomic resolution have been built with the aid of bioinformatics and computer simulations. Here, review of the recent progresses of such computational methods are made with discussion for the future direction.


Hybrid/integrative methods Computational biology Structural biology X-ray SAXS NMR Cryo-EM 



This work was supported by grants from the Database Integration Coordination Program from the National Bioscience Database Center (NBDC) – JST (Japan Science and Technology Agency), the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from AMED, and JSPS KAKENHI [17K07364].


  1. Alvarez FJD, He S, Perilla JR, Jang S, Schulten K, Engelman AN, Scheres SHW, Zhang P (2017) CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Sci Adv 3:e1701264CrossRefGoogle Scholar
  2. Ando T (2014) High-speed AFM imaging. Curr Opin Str Biol 28:63–68CrossRefGoogle Scholar
  3. Babu MM (2016) The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 44:1185–1200CrossRefGoogle Scholar
  4. Berman HM, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nature Struct Biol 10:980CrossRefGoogle Scholar
  5. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide protein data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucl Acids Res 35:D301–D303CrossRefGoogle Scholar
  6. Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2013) How community has shaped the protein data bank. Structure 21:1485–1491CrossRefGoogle Scholar
  7. Berman HM, Burley SK, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2016) The archiving and dissemination of biological structure data. Curr Opin Struct Biol 40:17–22CrossRefGoogle Scholar
  8. Burley SK, Kurisu G, Markley JL, Nakamura H, Velankar S, Berman HM, Sali A, Schwede T, Trewhella J (2017) PDB-dev: a prototype system for depositing integrative/hybrid structural models. Structure 25:1317–1318CrossRefGoogle Scholar
  9. Chen P, Hub JS (2015) Interpretation of solution X-ray scattering by explicit-solvent molecular dynamics. Biophys J 108:2573–2584CrossRefGoogle Scholar
  10. Ewen C (2014) Data bank struggles as protein imaging ups its game: hybrid methods to solve structures of molecular machines create a storage headache. Nature 514:416CrossRefGoogle Scholar
  11. Hopf TA, Colwell LJ, Sheridan T, Rost B, Sander C, Marks DS (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149:1607–1621CrossRefGoogle Scholar
  12. Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, Sander C, Bonvin AMJJ, Marks DS (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. elife 3:e03430CrossRefGoogle Scholar
  13. Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H (2018) Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucl Acids Res 46:2243–2251CrossRefGoogle Scholar
  14. Kawabata T (2008) Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a Gaussian mixture mode. Biophys J 95:4643–4658CrossRefGoogle Scholar
  15. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293CrossRefGoogle Scholar
  16. Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank (BMRB) as a partner in the worldwide protein data Bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 40:153–155CrossRefGoogle Scholar
  17. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766CrossRefGoogle Scholar
  18. Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem Phys Chem 9:1859–1866CrossRefGoogle Scholar
  19. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2016) Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins 84(Suppl 1):4–14CrossRefGoogle Scholar
  20. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64CrossRefGoogle Scholar
  21. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, Cohen NM, Wingett S, Fraser P, Tanay A (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67CrossRefGoogle Scholar
  22. Oroguchi T, Ikeguchia M (2011) Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations. J Chem Phys 134:025102CrossRefGoogle Scholar
  23. Orzechowski M, Tama F (2008) Flexible fitting of high-resolution X-ray structures into cryoelectron microscopy maps using biased molecular dynamics simulations. Biophys J 95:5692–5705CrossRefGoogle Scholar
  24. Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D (2017) Protein structure determination using metagenome sequence data. Science 355:294–298CrossRefGoogle Scholar
  25. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon I-JL, Gronenborn AM, Polenova T, Zhang P (2017) CryoEM structure refinement by integrating NMR chemical shifts with molecular dynamics simulations. J Phys Chem B 121:3853–3863CrossRefGoogle Scholar
  26. Rossi P, Shi L, Liu G, Barbieri CM, Lee H-W, Grant TD, Luft JR, Xiao R, Acton TB, Snell EH, Montelione GT, Baker D, Lange OF, Sgourakis NG (2015) A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 83:309–317CrossRefGoogle Scholar
  27. Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley JL, Nakamura H, Adams P, Bonvin AM, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Johnson G, Lawson CL, Meiler J, Marti-Renom MA, Montelione GT, Nilges M, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schröder GF, Schwieters CD, Seidel CA, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD (2015) Outcome of the first wwPDB hybrid/integrative methods task force workshop. Structure 23:1156–1167CrossRefGoogle Scholar
  28. Tang Y, Huang YJ, Hopf TA, Sander C, Marks DS, Montelione GT (2015) Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat Methods 12:751–754CrossRefGoogle Scholar
  29. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into Electron microscopy maps using molecular dynamics. Structure 16:673–683CrossRefGoogle Scholar
  30. Wodak SJ, Janin J (2017) Modeling protein assemblies: critical assessment of predicted interactions (CAPRI) 15 years hence. Proteins 85:357–358CrossRefGoogle Scholar
  31. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29CrossRefGoogle Scholar
  32. Zhang L, Xie WJ, Liu S, Meng L, Gu C, Gao YQ (2017) DNA methylation landscape reflects the spatial organization of chromatin in different cells. Biophys J 113:1395–1404CrossRefGoogle Scholar
  33. Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.PDBj, Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations