Advertisement

Structural Aspects of ER Glycoprotein Quality-Control System Mediated by Glucose Tagging

  • Tadashi Satoh
  • Koichi KatoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)

Abstract

N-linked oligosaccharides attached to proteins act as tags for glycoprotein quality control, ensuring their appropriate folding and trafficking in cells. Interactions with a variety of intracellular lectins determine glycoprotein fates. Monoglucosylated glycoforms are the hallmarks of incompletely folded glycoproteins in the protein quality-control system, in which glucosidase II and UDP-glucose/glycoprotein glucosyltransferase are, respectively, responsible for glucose trimming and attachment. In this review, we summarize a recently emerging view of the structural basis of the functional mechanisms of these key enzymes as well as substrate N-linked oligosaccharides exhibiting flexible structures, as revealed by applying a series of biophysical techniques including small-angle X-ray scattering, X-ray crystallography, high-speed atomic force microscopy, electron microscopy, and computational simulation in conjunction with NMR spectroscopy.

Keywords

Endoplasmic reticulum Glucose Glucosidase Glucosyltransferase N-linked oligosaccharide Protein quality control 

Notes

Acknowledgments

This work was supported in part by the Okazaki ORION project and Grants-in-Aid for Scientific Research (Grant Numbers JP25121730 to T.S., and JP25102008, JP24249002 to K.K.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the PRESTO project (Grant Number JPMJPR13L5 to T.S.) from the Japan Science and Technology Agency, and by Grant-in-Aid for Research in Nagoya City University.

References

  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER trends. Biochem Sci 35:74–82.  https://doi.org/10.1016/j.tibs.2009.10.001 CrossRefGoogle Scholar
  2. Arendt CW, Ostergaard HL (2000) Two distinct domains of the β -subunit of glucosidase II interact with the catalytic α-subunit. Glycobiology 10:487–492.  https://doi.org/10.1093/glycob/10.5.487 CrossRefPubMedGoogle Scholar
  3. Arnold SM, Kaufman RJ (2003) The noncatalytic portion of human UDP-glucose: glycoprotein glucosyltransferase I confers UDP-glucose binding and transferase function to the catalytic domain. J Biol Chem 278:43320–43328.  https://doi.org/10.1074/jbc.M305800200 CrossRefGoogle Scholar
  4. Balaji PV, Qasba PK, Rao VS (1994) Molecular dynamics simulations of high-mannose oligosaccharides. Glycobiology 4:497–515.  https://doi.org/10.1093/glycob/4.4.497 CrossRefPubMedGoogle Scholar
  5. Barker MK, Rose DR (2013) Specificity of processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J Biol Chem 288:13563–13574.  https://doi.org/10.1074/jbc.M113.460436 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Betenbaugh MJ, Tomiya N, Narang S, Hsu JT, Lee YC (2004) Biosynthesis of human-type N-glycans in heterologous systems. Curr Opin Struct Biol 14:601–606.  https://doi.org/10.1016/j.sbi.2004.09.001 CrossRefGoogle Scholar
  7. Blees A et al (2017) Structure of the human MHC-I peptide-loading complex. Nature 551:525–528.  https://doi.org/10.1038/nature24627 CrossRefGoogle Scholar
  8. Burkhalter NF, Dimick SM, Toone EJ (2000) Protein-carbohydrate interaction: fundamental considerations. In: Ernst B, Hart GW, Sinaÿ P (eds) Carbohydrates in chemistry and biology, part II, vol 2. Wiley-VCH, Weinhein, pp 863–914.  https://doi.org/10.1002/9783527618255.ch31 CrossRefGoogle Scholar
  9. Calles-Garcia D et al (2017) Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins. J Biol Chem 292:11499–11507.  https://doi.org/10.1074/jbc.M117.789495 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caputo AT et al (2016) Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proc Natl Acad Sci U S A 113(32):E4630–E4638.  https://doi.org/10.1073/pnas.1604463113 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Caramelo JJ, Castro OA, Alonso LG, De Prat-Gay G, Parodi AJ (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci U S A 100:86–91.  https://doi.org/10.1073/pnas.262661199 CrossRefPubMedGoogle Scholar
  12. Castonguay AC, Olson LJ, Dahms NM (2011) Mannose 6-phosphate receptor homology (MRH) domain-containing lectins in the secretory pathway. Biochim Biophys Acta 1810:815–826.  https://doi.org/10.1016/j.bbagen.2011.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  13. D’Alessio C, Caramelo JJ, Parodi AJ (2010) UDP-GlC: glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semi Cell Dev Bio 21:491–499.  https://doi.org/10.1016/j.semcdb.2009.12.014 CrossRefGoogle Scholar
  14. D’Alessio C, Dahms NM (2015) Glucosidase II and MRH-domain containing proteins in the secretory pathway. Curr Protein Pept Sci 16:31–48.  https://doi.org/10.2174/1389203716666150213160438 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deprez P, Gautschi M, Helenius A (2005) More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Mol Cell 19:183–195.  https://doi.org/10.1016/j.molcel.2005.05.029 CrossRefPubMedGoogle Scholar
  16. Drenth JP, te Morsche RH, Smink R, Bonifacino JS, Jansen JB (2003) Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet 33:345–347.  https://doi.org/10.1038/ng1104 CrossRefGoogle Scholar
  17. Ernst HA, Lo Leggio L, Willemoes M, Leonard G, Blum P, Larsen S (2006) Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358:1106–1124.  https://doi.org/10.1016/j.jmb.2006.02.056 CrossRefGoogle Scholar
  18. Fisher C, Beglova N, Blacklow SC (2006) Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol Cell 22:277–283.  https://doi.org/10.1016/j.molcel.2006.02.021 CrossRefPubMedGoogle Scholar
  19. Grinna LS, Robbins PW (1980) Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J Biol Chem 255:2255–2258PubMedGoogle Scholar
  20. Guerin M, Parodi AJ (2003) The UDP-glucose:glycoprotein glucosyltransferase is organized in at least two tightly bound domains from yeast to mammals. J Biol Chem 278:20540–20546.  https://doi.org/10.1074/jbc.M300891200 CrossRefPubMedGoogle Scholar
  21. Heras B, Kurz M, Shouldice SR, Martin JL (2007) The name’s bond disulfide bond. Curr Opin Struct Biol 17:691–698.  https://doi.org/10.1016/j.sbi.2007.08.009 CrossRefPubMedGoogle Scholar
  22. Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 284:17061–17068.  https://doi.org/10.1074/jbc.M809725200 CrossRefGoogle Scholar
  23. Hu D et al (2009) Sugar-binding activity of the MRH domain in the ER α-glucosidase II β subunit is important for efficient glucose trimming. Glycobiology 19:1127–1135.  https://doi.org/10.1093/glycob/cwp104 CrossRefPubMedGoogle Scholar
  24. Hulpke S, Tampe R (2013) The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci 38:412–420.  https://doi.org/10.1016/j.tibs.2013.06.003 CrossRefPubMedGoogle Scholar
  25. Ito Y, Takeda Y, Seko A, Izumi M, Kajihara Y (2015) Functional analysis of endoplasmic reticulum glucosyltransferase (UGGT): Synthetic chemistry’s initiative in glycobiology. Semin Cell Dev Bio 41:90–98.  https://doi.org/10.1016/j.semcdb.2014.11.011 CrossRefGoogle Scholar
  26. Izumi M et al (2012) Chemical synthesis of intentionally misfolded homogeneous glycoprotein: a unique approach for the study of glycoprotein quality control. J Am Chem Soc 134:7238–7241.  https://doi.org/10.1021/ja3013177 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jessop CE, Tavender TJ, Watkins RH, Chambers JE, Bulleid NJ (2009) Substrate specificity of the oxidoreductase ERp57 is determined primarily by its interaction with calnexin and calreticulin. J Biol Chem 284:2194–2202.  https://doi.org/10.1074/jbc.M808054200 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kamiya Y, Satoh T, Kato K (2012) Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta 1820:1327–1337.  https://doi.org/10.1016/j.bbagen.2011.12.017 CrossRefGoogle Scholar
  29. Kamiya Y, Satoh T, Kato K (2014) Recent advances in glycoprotein production for structural biology: toward tailored design of glycoforms. Curr Opin Struct Biol 26:44–53.  https://doi.org/10.1016/j.sbi.2014.03.008 CrossRefPubMedGoogle Scholar
  30. Kamiya Y, Yamamoto S, Chiba Y, Jigami Y, Kato K (2011) Overexpression of a homogeneous oligosaccharide with C labeling by genetically engineered yeast strain. J Biomol NMR 50:397–401. https://doi.org/10.1007/s10858-011-9525-1CrossRefGoogle Scholar
  31. Kamiya Y, Yanagi K, Kitajima T, Yamaguchi T, Chiba Y, Kato K (2013) Application of metabolic C labeling in conjunction with high-field nuclear magnetic resonance spectroscopy for comparative conformational analysis of high mannose-type oligosaccharides. Biomol Ther 3:108–123.  https://doi.org/10.3390/biom3010108 CrossRefGoogle Scholar
  32. Kato K, Yamaguchi T (2015) Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides. Glycoconj J 32:505–513.  https://doi.org/10.1007/s10719-015-9599-1 CrossRefGoogle Scholar
  33. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R.  https://doi.org/10.1093/glycob/cwj066 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim JJ, Olson LJ, Dahms NM (2009) Carbohydrate recognition by the mannose-6-phosphate receptors. Curr Opin Struct Biol 19:534–542.  https://doi.org/10.1016/j.sbi.2009.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664.  https://doi.org/10.1146/annurev.bi.54.070185.003215 CrossRefPubMedGoogle Scholar
  36. Kozlov G, Maattanen P, Thomas DY, Gehring K (2010a) A structural overview of the PDI family of proteins. FEBS J 277:3924–3936.  https://doi.org/10.1111/j.1742-4658.2010.07793.x CrossRefPubMedGoogle Scholar
  37. Kozlov G, Munoz-Escobar J, Castro K, Gehring K (2017) Mapping the ER interactome: The P domains of calnexin and calreticulin as plurivalent adapters for foldases and chaperones. Structure 25:1415–1422 e1413.  https://doi.org/10.1016/j.str.2017.07.010 CrossRefPubMedGoogle Scholar
  38. Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A, Williams DB, Gehring K (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620.  https://doi.org/10.1074/jbc.M110.168294 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hatfield DL, Gladyshev VN (2005) A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase. J Biol Chem 280:37839–37845.  https://doi.org/10.1074/jbc.M508685200 CrossRefPubMedGoogle Scholar
  40. Labunskyy VM, Hatfield DL, Gladyshev VN (2007) The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life 59:1–5.  https://doi.org/10.1080/15216540601126694 CrossRefPubMedGoogle Scholar
  41. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523.  https://doi.org/10.1016/j.sbi.2009.06.004 CrossRefPubMedGoogle Scholar
  42. Li A et al (2003) Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet 72:691–703.  https://doi.org/10.1086/368295 CrossRefGoogle Scholar
  43. Lovering AL, Lee SS, Kim YW, Withers SG, Strynadka NC (2005) Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem 280:2105–2115.  https://doi.org/10.1074/jbc.M410468200 CrossRefGoogle Scholar
  44. Maattanen P, Kozlov G, Gehring K, Thomas DY (2006) ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations. Biochem Cell Biol 84:881–889.  https://doi.org/10.1139/o06-186 CrossRefPubMedGoogle Scholar
  45. Mikami K et al (2010) The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 20:310–321.  https://doi.org/10.1093/glycob/cwp175 CrossRefPubMedGoogle Scholar
  46. Munro S (2001) The MRH domain suggests a shared ancestry for the mannose 6-phosphate receptors and other N-glycan-recognising proteins. Curr Biol 11:R499–R501.  https://doi.org/10.1016/S0960-9822(01)00302-5 CrossRefGoogle Scholar
  47. Nakao H, Seko A, Ito Y, Sakono M (2017) PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun 487:763–767.  https://doi.org/10.1016/j.bbrc.2017.04.139 CrossRefPubMedGoogle Scholar
  48. Ninagawa S et al (2014) EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. J Cell Biol 206:347–356.  https://doi.org/10.1083/jcb.201404075 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ohara K, Takeda Y, Daikoku S, Hachisu M, Seko A, Ito Y (2015) Profiling aglycon-recognizing sites of UDP-glucose:glycoprotein Glucosyltransferase by means of squarate-mediated labeling. Biochemistry 54:4909–4917.  https://doi.org/10.1021/acs.biochem.5b00785 CrossRefPubMedGoogle Scholar
  50. Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88.  https://doi.org/10.1126/science.275.5296.86 CrossRefPubMedGoogle Scholar
  51. Olson LJ et al (2013) Structure of the lectin mannose 6-phosphate receptor homology (MRH) domain of glucosidase II, an enzyme that regulates glycoprotein folding quality control in the endoplasmic reticulum. J Biol Chem 288:16460–16475.  https://doi.org/10.1074/jbc.M113.450239 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Olson LJ, Orsi R, Peterson FC, Parodi AJ, Kim JJ, D’Alessio C, Dahms NM (2015) Crystal structure and functional analyses of the lectin domain of Glucosidase II: insights into oligomannose recognition. Biochemistry 54:4097–4111.  https://doi.org/10.1021/acs.biochem.5b00256 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Park S, You KH, Shong M, Goo TW, Yun EY, Kang SW, Kwon OY (2005) Overexpression of ERp29 in the thyrocytes of FRTL-5 cells. Mol Biol Rep 32:7–13.  https://doi.org/10.1007/s11033-004-3069-3 CrossRefPubMedGoogle Scholar
  54. Pelletier MF et al (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10:815–827.  https://doi.org/10.1093/glycob/10.8.815 CrossRefGoogle Scholar
  55. Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, Strynadka NC (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol 8:166–175.  https://doi.org/10.1038/84168 CrossRefGoogle Scholar
  56. Petrescu AJ, Butters TD, Reinkensmeier G, Petrescu S, Platt FM, Dwek RA, Wormald MR (1997) The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J 16:4302–4310.  https://doi.org/10.1093/emboj/16.14.4302 CrossRefGoogle Scholar
  57. Porath B et al (2016) Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207.  https://doi.org/10.1016/j.ajhg.2016.05.004 CrossRefGoogle Scholar
  58. Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877.  https://doi.org/10.1016/j.molcel.2008.11.017 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Quinn RP, Mahoney SJ, Wilkinson BM, Thornton DJ, Stirling CJ (2009) A novel role for Gtb1p in glucose trimming of N-linked glycans. Glycobiology 19:1408–1416.  https://doi.org/10.1093/glycob/cwp087 CrossRefGoogle Scholar
  60. Ren L, Qin X, Cao X, Wang L, Bai F, Bai G, Shen Y (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2:827–836.  https://doi.org/10.1007/s13238-011-1105-3 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Roversi P et al (2017) Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proc Natl Acad Sci U S A 114:8544–8549.  https://doi.org/10.1073/pnas.1703682114 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sakono M, Seko A, Takeda Y, Ito Y (2014) PDI family protein ERp29 forms 1:1 complex with lectin chaperone calreticulin. Biochem Biophys Res Commun 452:27–31.  https://doi.org/10.1016/j.bbrc.2014.08.041 CrossRefPubMedGoogle Scholar
  63. Satoh T, Chen Y, Hu D, Hanashima S, Yamamoto K, Yamaguchi Y (2010) Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol Cell 40:905–916.  https://doi.org/10.1016/j.molcel.2010.11.017 CrossRefPubMedGoogle Scholar
  64. Satoh T et al (2017) Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT. Sci Rep 7:12142.  https://doi.org/10.1038/s41598-017-12283-w CrossRefPubMedPubMedCentralGoogle Scholar
  65. Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K (2016a) Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Protein Sci 25:2095–2101.  https://doi.org/10.1002/pro.3031 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Satoh T, Toshimori T, Yan G, Yamaguchi T, Kato K (2016b) Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci Rep 6:20575.  https://doi.org/10.1038/srep20575 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Satoh T, Yamaguchi T, Kato K (2015) Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum. Molecules 20:2475–2491.  https://doi.org/10.3390/molecules20022475 CrossRefGoogle Scholar
  68. Sayce AC, Miller JL, Zitzmann N (2010) Targeting a host process as an antiviral approach against dengue virus. Trends Microbiol 18:323–330.  https://doi.org/10.1016/j.tim.2010.04.003 CrossRefPubMedGoogle Scholar
  69. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR (2008) Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375:782–792.  https://doi.org/10.1016/j.jmb.2007.10.069 CrossRefPubMedGoogle Scholar
  70. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285:17763–17770.  https://doi.org/10.1074/jbc.M109.078980 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stanley P, Schachter H, Taniguchi N (2009) N-glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology. Cold Spring Harbor, Cold Spring Harbor LabGoogle Scholar
  72. Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D’Alessio C (2011) Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol Biol Cell 22:1810–1823.  https://doi.org/10.1091/mbc.E11-01-0019 CrossRefGoogle Scholar
  73. Stigliano ID, Caramelo JJ, Labriola CA, Parodi AJ, D’Alessio C (2009) Glucosidase II β subunit modulates N-glycan trimming in fission yeasts and mammals. Mol Biol Cell 20:3974–3984.  https://doi.org/10.1091/mbc.E09-04-0316 CrossRefGoogle Scholar
  74. Suzuki T et al (2017) Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. Chembiochem 18:396–401.  https://doi.org/10.1002/cbic.201600595 CrossRefPubMedGoogle Scholar
  75. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A (2013) Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J Biol Chem 288:19296–19303.  https://doi.org/10.1074/jbc.M113.465211 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Takeda Y et al (2014) Both isoforms of human UDP-glucose:glycoprotein glucosyltransferase are enzymatically active. Glycobiology 24:344–350.  https://doi.org/10.1093/glycob/cwt163 CrossRefPubMedGoogle Scholar
  77. Takeda Y, Totani K, Matsuo I, Ito Y (2009) Chemical approaches toward understanding glycan-mediated protein quality control. Curr Opin Chem Biol 13:582–591.  https://doi.org/10.1016/j.cbpa.2009.09.011 CrossRefPubMedGoogle Scholar
  78. Taylor SC, Ferguson AD, Bergeron JJ, Thomas DY (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11:128–134.  https://doi.org/10.1038/nsmb715 CrossRefPubMedGoogle Scholar
  79. Totani K, Ihara Y, Matsuo I, Ito Y (2006) Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans. J Biol Chem 281:31502–31508.  https://doi.org/10.1074/jbc.M605457200 CrossRefPubMedGoogle Scholar
  80. Totani K, Ihara Y, Matsuo I, Ito Y (2008) Effects of macromolecular crowding on glycoprotein processing enzymes. J Am Chem Soc 130:2101–2107.  https://doi.org/10.1021/ja077570k CrossRefPubMedGoogle Scholar
  81. Totani K, Ihara Y, Tsujimoto T, Matsuo I, Ito Y (2009) The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 48:2933–2940.  https://doi.org/10.1021/bi8020586 CrossRefPubMedGoogle Scholar
  82. Trombetta ES, Fleming KG, Helenius A (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40:10717–10722.  https://doi.org/10.1021/bi010629u CrossRefPubMedGoogle Scholar
  83. Trombetta ES, Simons JF, Helenius A (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271:27509–27516.  https://doi.org/10.1074/jbc.271.44.27509 CrossRefPubMedGoogle Scholar
  84. Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N (2017) Iminosugars: Promising therapeutics for influenza infection. Crit Rev Microbiol 43:521–545.  https://doi.org/10.1080/1040841X.2016.1242868 CrossRefPubMedGoogle Scholar
  85. Vliegenthart JFG, Dornald L, Halveek HV (1983) High-resolution, H-nuclear magnetic resonance spectroscopy as a tool on the structural analysis of carbohydrates related to glycoproteins. Adv Carbohydr Chem Biochem 41:209–374.  https://doi.org/10.1016/S0065-2318(08)60059-1 CrossRefGoogle Scholar
  86. Watanabe T, Totani K, Matsuo I, Maruyama J, Kitamoto K, Ito Y (2009) Genetic analysis of glucosidase II β -subunit in trimming of high-mannosetype glycans. Glycobiology 19:834–840.  https://doi.org/10.1093/glycob/cwp061 CrossRefPubMedGoogle Scholar
  87. Wooten EW, Bazzo R, Edge CJ, Zamze S, Dwek RA, Rademacher TW (1990) Primary sequence dependence of conformation in oligomannose oligosaccharides. Eur Biophys J 18:139–148.  https://doi.org/10.1007/BF02427373 CrossRefPubMedGoogle Scholar
  88. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386.  https://doi.org/10.1021/cr990368i CrossRefPubMedGoogle Scholar
  89. Yamaguchi T, Kamiya Y, Choo Y-M, Yamamoto S, Kato K (2013) Terminal spin labeling of a high-mannose-type oligosaccharide for quantitative NMR analysis of its dynamic conformation. Chem Lett 42:544–546.  https://doi.org/10.1246/cl.130040 CrossRefGoogle Scholar
  90. Yamaguchi T, Kato K (2014) Paramagnetism-assisted nuclear magnetic resonance analysis of dynamic conformations and interactions of oligosaccharides glycoscience. In: Taniguchi N, Endo T, Hart GW, Seeberger P, Wong C-H (eds) Biology and medicine. Springer (Japan) in press,  https://doi.org/10.1007/978-4-431-54836-2_101-1 Google Scholar
  91. Yamaguchi T, Sakae Y, Zhang Y, Yamamoto S, Okamoto Y, Kato K (2014) Exploration of conformational spaces of high-mannose-type oligosaccharides by an NMR-validated simulation. Angewandte Chemie 53:10941–10944.  https://doi.org/10.1002/anie.201406145 CrossRefPubMedGoogle Scholar
  92. Zhang Y, Yamaguchi T, Kato K (2013) New NMR tools for characterizing the dynamic conformations and interactions of oligosaccharides. Chem Lett 42:1455–1462.  https://doi.org/10.1246/cl.130789 CrossRefGoogle Scholar
  93. Zhang Y et al (2015) Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. Adv Exp Med Biol 842:217–230.  https://doi.org/10.1007/978-3-319-11280-0_14 CrossRefPubMedGoogle Scholar
  94. Zhu T, Satoh T, Kato K (2014) Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase. Sci Rep 4:7322.  https://doi.org/10.1038/srep07322 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhu T, Yamaguchi T, Satoh T, Kato K (2015) A hybrid strategy for the preparation of 13C-Labeled high-mannose-type oligosaccharides with terminal Glucosylation for NMR study. Chem Lett 44:1744–1746.  https://doi.org/10.1246/cl.150898 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  2. 2.Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiJapan

Personalised recommendations