Advertisement

Synchrotron-Radiation Vacuum-Ultraviolet Circular-Dichroism Spectroscopy for Characterizing the Structure of Saccharides

  • Koichi MatsuoEmail author
  • Kunihiko Gekko
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)

Abstract

Circular-dichroism (CD) spectroscopy is a powerful tool for analyzing the structures of chiral molecules and biomolecules. The development of CD instruments using synchrotron radiation has greatly expanded the utility of this method by extending the spectra to the vacuum-ultraviolet (VUV) region below 190 nm and thereby yielding information that is unobtainable by conventional CD instruments. This technique is especially advantageous for monitoring the structure of saccharides that contain hydroxy and acetal groups with high-energy transitions in the VUV region. Combining VUVCD spectra with theoretical calculations provides new insight into the contributions of anomeric hydroxy groups and rotational isomers of hydroxymethyl groups to the dynamics, intramolecular hydrogen bonds, and hydration of saccharides in aqueous solution.

Keywords

Circular dichroism Glycoprotein Glycosaminoglycan Hydration Intramolecular hydrogen bond Molecular dynamics simulation Saccharide Solution structure Structural dynamics Synchrotron radiation Time-dependent density functional theory Vacuum ultraviolet 

Abbreviations

AGP

α1-acid glycoprotein

CD

circular dichroism

GG

gauche-gauche

GT

gauche-trans

MD

molecular dynamics

methyl α-d-Glc

methyl α-d-glucopyranoside

methyl β-d-Glc

methyl β-d-glucopyranoside

NMR

nuclear magnetic resonance

SR

synchrotron radiation

TDDFT

time-dependent density functional theory

TG

trans-gauche

UV

ultraviolet

VUV

vacuum ultraviolet

VUVCD

vacuum-ultraviolet circular dichroism

Notes

Acknowledgments

The authors sincerely thank Professor Masaki Taniguchi and staff members of Hiroshima Synchrotron Radiation Center, and Dr. Tomoyuki Fukazawa of JASCO Corporation for constructing the SR-VUVCD spectrometer. The authors are indebted to many collaborators for their helpful technical assistance and discussions. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (No. 15K07028 to K.M.) and by a grant from Kurata Memorial Hitachi Science and Technology Foundation.

References

  1. Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  2. Brahms S, Brahms J, Spach G, Brack A (1977) Identification of beta, beta-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism. Proc Natl Acad Sci USA 74:3208–3212CrossRefGoogle Scholar
  3. Bush CA, Ralapati S (1981) Vacuum UV circular dichroism spectroscopy of acetamido sugars. In: Brant DA (ed) Solution properties of polysaccharides. American Chemical Society, Washington, DC, pp 293–302CrossRefGoogle Scholar
  4. Chakrabarti B (1981) Carboxyl and amide transitions in the circular dichroism of glycosaminoglycans. In: Brant DA (ed) Solution properties of polysaccharides. American Chemical Society, Washington, DC, pp 275–292CrossRefGoogle Scholar
  5. Chervenak MC, Toone EJ (1995) Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities. Biochemistry 34:5685–5695CrossRefGoogle Scholar
  6. Coduti PL, Gordon EC, Bush CA (1977) Circular dichroism of oligosaccharides containing N-acetyl amino sugars. Anal Biochem 78:9–20CrossRefGoogle Scholar
  7. Collins MN, Birkinshaw C (2007) Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. J Appl Polym Sci 104:3183–3191CrossRefGoogle Scholar
  8. Farina RD, Wilkins RG (1980) Kinetics of interaction of some α- and β-D-monosaccharides with concanavalin A. Biochim Biophys Acta 631:428–438CrossRefGoogle Scholar
  9. Fasman GR (ed) (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New YorkGoogle Scholar
  10. Gekko K (1979) Circular dichroism study on polyelectrolytic properties of carboxymethyldextran. Biopolymers 18:1989–2003CrossRefGoogle Scholar
  11. Gekko K, Koga S (1983) Increased thermal stability of collagen in the presence of sugars and and polyols. J Biochem 94:199–205CrossRefGoogle Scholar
  12. Jagdale GB, Grewal PS, Salminen SO (2005) Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. J Parasitol 91:988–994CrossRefGoogle Scholar
  13. Johnson WC Jr (1971) A circular dichroism spectrometer for the vacuum ultraviolet. Rev Sci Instrum 42:1283–1286CrossRefGoogle Scholar
  14. Johnson WC Jr (1987) The circular dichroism of carbohydrates. Adv Carbohydr Chem Biochem 45:73–124CrossRefGoogle Scholar
  15. Kanematsu Y, Kamiya Y, Matsuo K, Gekko K, Kato K, Tachikawa M (2015) Isotope effect on the circular dichroism spectrum of methyl α-d-glucopyranoside in aqueous solution. Sci Rep 5:17900CrossRefGoogle Scholar
  16. Lewis DG, Johnson WC Jr (1978) Optical properties of sugars. VI Circular dichroism of amylose and glucose oligomers. Biopolymers 17:1439–1449CrossRefGoogle Scholar
  17. Liang JN, Stevens ES, Morris ER, Rees DA (1979) Spectroscopic origin of conformation-sensitive contributions to polysaccharide optical activity: vacuum-ultraviolet circular dichroism of agarose. Biopolymers 18:327–333CrossRefGoogle Scholar
  18. Listowsky I, Englard S (1968) Characterization of the far ultraviolet optically active absorption bands of sugars by circular dichroism. Biochem Biophys Res Commun 30:329–332CrossRefGoogle Scholar
  19. Matsuo K, Gekko K (2004) Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectroscopy. Carbohydr Res 339:591–597CrossRefGoogle Scholar
  20. Matsuo K, Gekko K (2013a) Construction of a synchrotron-radiation vacuum-ultraviolet circular-dichroism spectrophotometer and its application to the structural analysis of biomolecules. Bull Chem Soc Jpn 86:675–689CrossRefGoogle Scholar
  21. Matsuo K, Gekko K (2013b) Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment. Methods Mol Biol 974:151–176CrossRefGoogle Scholar
  22. Matsuo K, Namatame H, Taniguchi M, Gekko K (2009a) Vacuum-ultraviolet circular dichroism analysis of glycosaminoglycans by synchrotron-radiation spectroscopy. Biosci Biotechnol Biochem 73:557–561CrossRefGoogle Scholar
  23. Matsuo K, Namatame H, Taniguchi M, Gekko K (2009b) Membrane-induced conformational change of alpha1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy. Biochemistry 48:9103–9111CrossRefGoogle Scholar
  24. Matsuo K, Namatame H, Taniguchi M, Gekko K (2012) Vacuum-ultraviolet electronic circular dichroism study of methyl α-d-glucopyranoside in aqueous solution by time-dependent density functional theory. J Phys Chem A 116:9996–10003CrossRefGoogle Scholar
  25. Matsuo K, Namatame H, Taniguchi M, Gekko K (2015) Solution structures of methyl aldopyranosides revealed by vacuum-ultraviolet electronic circular-dichroism spectroscopy. Biomed Spectrosc Imaging 4:269–282CrossRefGoogle Scholar
  26. Miles MJ, Morris VJ, Orford PD, Ring SG (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135:271–281CrossRefGoogle Scholar
  27. Morris VJ (1986) Gelation of polysaccharides. In: Mitchell JR, Ledward DA (eds) Functional properties of food macromolecules. Elsevier Applied Science Publishers, New York, pp 121–170Google Scholar
  28. Nishi K, Ono T, Nakamura T, Fukunaga N, Izumi M, Watanabe H, Suenaga A, Maruyama T, Yamagata Y, Curry S, Otagiri M (2011) Structural insights into differences in drug-binding selectivity between two forms of human alpha1-acid glycoprotein genetic variants, the A and F1*S forms. J Biol Chem 286:14427–14434CrossRefGoogle Scholar
  29. Ojima N, Sakai K, Matsuo K, Matsui T, Fukazawa T, Namatame H, Taniguchi M, Gekko K (2001) Vacuum-ultraviolet circular dichroism spectrophotometer using synchrotron radiation: optical system and on-line performance. Chem Lett 30:522–523CrossRefGoogle Scholar
  30. Pysh ES (1976) Optical activity in the vacuum ultraviolet. Annu Rev Biophys Bioeng 5:63–75CrossRefGoogle Scholar
  31. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  32. Schneegurt MA, Sherman DM, Nayar S, Sherman LA (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597CrossRefGoogle Scholar
  33. Schnepp O, Allen S, Peason EF (1970) The measurement of circular dichroism in the vacuum ultraviolet. Rev Sci Instrum 40:1136–1141CrossRefGoogle Scholar
  34. Schönfeld DL, Ravelli RBG, Mueller U, Skerra A (2008) The 1.8-Å crystal structure of alpha1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol 384:393–405CrossRefGoogle Scholar
  35. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246:227–234CrossRefGoogle Scholar
  36. Snyder PA, Rowe EM (1980) The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements. Nucl Inst Methods 172:345–349CrossRefGoogle Scholar
  37. Stevens ES (1978) Far (vacuum) ultraviolet circular dichroism. Methods Enzymol 49:214–221CrossRefGoogle Scholar
  38. Stevens ES (1986) Vacuum UV circular dichroism of polysaccharides. Photochem Photobiol 44:287–293CrossRefGoogle Scholar
  39. Stevens ES (1996) Carbohydrate. In: Fasman GR (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, pp 501–530CrossRefGoogle Scholar
  40. Stipanovic AJ, Stevens ES (1980) Vacuum ultraviolet circular dichroism of (1→6)-β-d-glucan. Int J Biol Macromol 2:209–212CrossRefGoogle Scholar
  41. Stipanovic AJ, Stevens ES (1981) Vacuum UV dichroism of d-glucans. In: Brant DA (ed) Solution properties of polysaccharides. American Chemical Society, Washington, DC, pp 303–315CrossRefGoogle Scholar
  42. Stipanovic AJ, Stevens ES, Gekko K (1980) Vacuum ultraviolet circular dichroism of dextran. Macromolecules 13:1471–1473CrossRefGoogle Scholar
  43. Sutherland JC, Keck PC, Griffin KP, Takacs PZ (1982) Simultaneous measurement of absorption and circular dichroism in a synchrotron spectrometer. Nucl Inst Methods Phys Res 195:375–379CrossRefGoogle Scholar
  44. Sutherland JC, Lin B, Mugavero JA, Trunk J, Tomasz M, Santella R, Marky L, Breslauer KJ (1986) Vacuum ultraviolet circular dichroism of double stranded nucleic acids. Photochem Photobiol 44:295–301CrossRefGoogle Scholar
  45. Wallace BA (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nat Struct Biol 7:708–709CrossRefGoogle Scholar
  46. Wallace BA, Janes RW (eds) (2009) Modern techniques for circular dichroism and synchrotron radiation circular dichroism spectroscopy. IOS, AmsterdamGoogle Scholar
  47. Wallace BA, Gekko K, Hoffmann SV, Lin YH, Sutherland JC, Tao J, Wien F, Janes RW (2011) Synchrotron radiation circular dichroism (SRCD) spectroscopy: an emerging method in structural biology for examining protein conformations and protein interactions. Nucl Instrum Methods Phys Res A 649:177–178CrossRefGoogle Scholar
  48. Wu HCH, Sarko A (1978) The double-helical molecular structure of crystalline b-amylose. Carbohydr Res 61:7–25CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hiroshima Synchrotron Radiation CenterHiroshima UniversityHigashi-Hiroshima, HiroshimaJapan

Personalised recommendations