Isomeric Separation and Characterisation of Glycoconjugates

  • Kathirvel Alagesan
  • Arun Everest-Dass
  • Daniel Kolarich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)


Individual monosaccharides can be linked in a variety of different combinations to form complex glycoconjugates. In contrast to DNA and proteins, glycoconjugate synthesis does not follow any template but is the consequence of the concerted action of various enzymes such as transferases and glycosidases. Thus, tools for glycoconjugate sequencing need to differentiate individual monosaccharide identity, linkage and anomericity to investigate and understand glycoconjugate function. In this chapter we provide a concise overview on the most commonly used and robust tools to separate and characterise glycoconjugate isomers.


Glycomics Glycoproteomics N-glycan O-glycan Porous graphitized carbon PGC HILIC HPLC 



Collision cross section


Capillary electrophoresis


Deoxyribonucleic acid


Degree of polymerisation


Electrospray ionisation








Hydrophilic interaction chromatography


High-performance liquid chromatography


Ion pairing


Monoclonal antibody


Matrix-assisted laser desorption/ionisation


Mass spectrometry


N-Acetylneuraminic acid


Nuclear magnetic resonance


Porous graphitised carbon


Ribonucleic acid


Reverse phase


  1. Abrahams JL, Packer NH, Campbell MP (2015) Relative quantitation of multi-antennary N-glycan classes: combining PGC-LC-ESI-MS with exoglycosidase digestion. Analyst 140(16):5444–5449PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abrahams JL, Campbell MP, Packer NH (2018) Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 35(1):15–29PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adamczyk B et al (2014) Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res 389:174–185PubMedCrossRefPubMedCentralGoogle Scholar
  4. Adamczyk B et al (2018) Sample handling of gastric tissue and O-glycan alterations in paired gastric cancer and non-tumorigenic tissues. Sci Rep 8(1):242PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409(2):529–538PubMedCrossRefPubMedCentralGoogle Scholar
  6. Almeida A, Kolarich D (2016) The promise of protein glycosylation for personalised medicine. Biochim Biophys Acta 1860(8):1583–1595PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anugraham M et al (2014) Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol Cell Proteomics 13(9):2213–2232PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anugraham M et al (2015) A platform for the structural characterization of glycans enzymatically released from glycosphingolipids extracted from tissue and cells. Rapid Commun Mass Spectrom 29(7):545–561PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anugraham M et al (2017) Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma. Mol Oncol 11(11):1595–1615PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arnold JN et al (2004) The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J Immunol 173(11):6831–6840PubMedCrossRefPubMedCentralGoogle Scholar
  11. Arnold JN et al (2005) Human serum IgM glycosylation: identification of glycoforms that can bind to mannan-binding lectin. J Biol Chem 280(32):29080–29087PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ashline DJ et al (2007) Carbohydrate structural isomers analyzed by sequential mass spectrometry. Anal Chem 79(10):3830–3842PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barroso A et al (2018) Evaluation of ion mobility for the separation of glycoconjugate isomers due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. J Proteome 173:22–31CrossRefGoogle Scholar
  14. Behne A et al (2013) glyXalign: high-throughput migration time alignment preprocessing of electrophoretic data retrieved via multiplexed capillary gel electrophoresis with laser-induced fluorescence detection-based glycoprofiling. Electrophoresis 34(16):2311–2315PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bielik AM, Zaia J (2011) Multistage tandem mass spectrometry of chondroitin sulfate and dermatan sulfate. Int J Mass Spectrom 305(2–3):131–137PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bleckmann C, Geyer H, Geyer R (2011) Nanoelectrospray-MS( n ) of native and permethylated glycans. Methods Mol Biol 790:71–85PubMedCrossRefPubMedCentralGoogle Scholar
  17. Callewaert N et al (2004) Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat Med 10(4):429–434PubMedCrossRefPubMedCentralGoogle Scholar
  18. Campbell MP et al (2014) Validation of the curation pipeline of UniCarb-DB: building a global glycan reference MS/MS repository. Biochim Biophys Acta 1844(1 Pt A):108–116PubMedCrossRefPubMedCentralGoogle Scholar
  19. Carvalho S et al (2016) Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene 35(13):1619–1631PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chaudhury NM et al (2016) Reduced Mucin-7 (Muc7) sialylation and altered saliva rheology in Sjogren’s syndrome associated oral dryness. Mol Cell Proteomics 15(3):1048–1059PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen FT, Evangelista RA (1998) Profiling glycoprotein n-linked oligosaccharide by capillary electrophoresis. Electrophoresis 19(15):2639–2644PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ciucanu I, Costello CE (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J Am Chem Soc 125(52):16213–16219PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131(2):209–217CrossRefGoogle Scholar
  24. Costello CE, Contado-Miller JM, Cipollo JF (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J Am Soc Mass Spectrom 18(10):1799–1812PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5(10):1087–1104PubMedCrossRefPubMedCentralGoogle Scholar
  26. de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J 33(8):823–841PubMedPubMedCentralCrossRefGoogle Scholar
  27. de Haan N et al (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem 87(16):8284–8291PubMedCrossRefPubMedCentralGoogle Scholar
  28. Deshpande N et al (2010) GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res 9(2):1063–1075PubMedCrossRefPubMedCentralGoogle Scholar
  29. Duus J, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100(12):4589–4614PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dwek RA (1995) Glycobiology: “towards understanding the function of sugars”. Biochem Soc Trans 23(1):1–25PubMedCrossRefPubMedCentralGoogle Scholar
  31. Everest-Dass AV et al (2013) Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J Am Soc Mass Spectrom 24(6):895–906PubMedCrossRefPubMedCentralGoogle Scholar
  32. Flowers SA et al (2013) Selected reaction monitoring to differentiate and relatively quantitate isomers of sulfated and unsulfated core 1 O-glycans from salivary MUC7 protein in rheumatoid arthritis. Mol Cell Proteomics 12(4):921–931PubMedPubMedCentralCrossRefGoogle Scholar
  33. Flowers SA et al (2017) Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci Rep 7(1):13149PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fukuda M (1996) Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56(10):2237–2244PubMedPubMedCentralGoogle Scholar
  35. Furukawa K et al (2001) Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta 1525(1–2):1–12PubMedPubMedCentralGoogle Scholar
  36. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gahoual R et al (2013) Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs 5(3):479–490PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gao WN et al (2015) Microfluidic chip-LC/MS-based glycomic analysis revealed distinct N-glycan profile of rat serum. Sci Rep 5:12844PubMedPubMedCentralCrossRefGoogle Scholar
  39. Garner B et al (2001) Structural elucidation of the N- and O-glycans of human apolipoprotein(a): role of o-glycans in conferring protease resistance. J Biol Chem 276(25):22200–22208PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gennaro LA, Salas-Solano O (2008) On-line CE-LIF-MS technology for the direct characterization of N-linked glycans from therapeutic antibodies. Anal Chem 80(10):3838–3845PubMedCrossRefPubMedCentralGoogle Scholar
  41. Giorgetti J et al (2018) Monoclonal antibody N-glycosylation profiling using capillary electrophoresis – mass spectrometry: assessment and method validation. Talanta 178:530–537PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gustafsson OJ et al (2015) MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal Bioanal Chem 407(8):2127–2139PubMedCrossRefPubMedCentralGoogle Scholar
  43. Guttman A (2013) Capillary electrophoresis in the N-glycosylation analysis of biopharmaceuticals. TrAC-Trends Anal Chem 48:132–143CrossRefGoogle Scholar
  44. Guttman M, Lee KK (2016) Site-specific mapping of sialic acid linkage isomers by ion mobility spectrometry. Anal Chem 88(10):5212–5217PubMedPubMedCentralCrossRefGoogle Scholar
  45. Guttman A, Pritchett T (1995) Capillary gel electrophoresis separation of high-mannose type oligosaccharides derivatized by 1-aminopyrene-3,6,8-trisulfonic acid. Electrophoresis 16(10):1906–1911PubMedCrossRefPubMedCentralGoogle Scholar
  46. Guttman A et al (1996a) High-resolution capillary gel electrophoresis of reducing oligosaccharides labeled with 1-aminopyrene-3,6,8-trisulfonate. Anal Biochem 233(2):234–242PubMedCrossRefPubMedCentralGoogle Scholar
  47. Guttman A, Chen FT, Evangelista RA (1996b) Separation of 1-aminopyrene-3,6,8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis. Electrophoresis 17(2):412–417PubMedCrossRefPubMedCentralGoogle Scholar
  48. Haltiwanger RS (2002) Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 12(5):593–598PubMedCrossRefPubMedCentralGoogle Scholar
  49. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18(6):349–450PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hennig R et al (2015) N-Glycosylation Fingerprinting of Viral Glycoproteins by xCGE-LIF. Methods Mol Biol 1331:123–143PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hinneburg H et al (2016) Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chem Commun (Camb) 52(23):4381–4384CrossRefGoogle Scholar
  52. Hinneburg H et al (2017) Unlocking cancer glycomes from histopathological formalin-fixed and paraffin-embedded (FFPE) tissue microdissections. Mol Cell Proteomics 16(4):524–536PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hofmann J et al (2014) Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry. Anal Chem 86(21):10789–10795PubMedCrossRefPubMedCentralGoogle Scholar
  54. Honda S et al (1989) Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2 pyridylglycamines. Anal Biochem 176(1):72–77PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hua S et al (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136(18):3663–3671PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hua S et al (2013) Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem 85(9):4636–4643PubMedPubMedCentralCrossRefGoogle Scholar
  57. Huang Y et al (2017) LC-MS/MS isomeric profiling of permethylated N-glycans derived from serum haptoglobin of hepatocellular carcinoma (HCC) and cirrhotic patients. Electrophoresis 38(17):2160–2167PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huffman JE et al (2014) Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics 13(6):1598–1610PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jensen PH et al (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 7(7):1299–1310PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kammeijer GSM et al (2017) Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis – electrospray ionization - mass spectrometry. Sci Rep 7(1):3733PubMedPubMedCentralCrossRefGoogle Scholar
  61. Karlsson NG et al (2004a) Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom 18(19):2282–2292PubMedCrossRefPubMedCentralGoogle Scholar
  62. Karlsson NG, Schulz BL, Packer NH (2004b) Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J Am Soc Mass Spectrom 15(5):659–672PubMedCrossRefPubMedCentralGoogle Scholar
  63. Karlsson H, Halim A, Teneberg S (2010) Differentiation of glycosphingolipid-derived glycan structural isomers by liquid chromatography/mass spectrometry. Glycobiology 20(9):1103–1116PubMedCrossRefPubMedCentralGoogle Scholar
  64. Khatri K et al (2017) Microfluidic capillary electrophoresis-mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal Chem 89(12):6645–6655PubMedPubMedCentralCrossRefGoogle Scholar
  65. Knox JH, Kaur B, Millward GR (1986) Structure and performance of porous graphitic carbon in liquid-chromatography. J Chromatogr 352:3–25CrossRefGoogle Scholar
  66. Kolarich D et al (2006) Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics 6(11):3369–3380PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kolarich D et al (2008) Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics 8(2):254–263PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kolarich D, Lepenies B, Seeberger PH (2012) Glycomics, glycoproteomics and the immune system. Curr Opin Chem Biol 16(1–2):214–220PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kolarich D et al (2015) Isomer-specific analysis of released N-Glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol Biol 1321:427–435PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kuberan B et al (2002) Analysis of heparan sulfate oligosaccharides with ion pair-reverse phase capillary high performance liquid chromatography-microelectrospray ionization time-of-flight mass spectrometry. J Am Chem Soc 124(29):8707–8718PubMedCrossRefPubMedCentralGoogle Scholar
  71. Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4(6):759–767PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lee A et al (2010) The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. OMICS 14(4):487–499PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lee A et al (2011) Liver membrane proteome glycosylation changes in mice bearing an extra-hepatic tumor. Mol Cell Proteomics 10(9):M900538MCP200PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mancera-Arteu M et al (2017) Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers. Anal Chim Acta 991:76–88PubMedCrossRefPubMedCentralGoogle Scholar
  75. Manz C, Pagel K (2018) Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy. Curr Opin Chem Biol 42:16–24PubMedCrossRefPubMedCentralGoogle Scholar
  76. Marino K et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–723PubMedCrossRefPubMedCentralGoogle Scholar
  77. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87(3):1422–1436PubMedCrossRefPubMedCentralGoogle Scholar
  78. Melmer M et al (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218(1):118–123PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miller RL et al (2017) Versatile separation and analysis of heparan sulfate oligosaccharides using graphitized carbon liquid chromatography and electrospray mass spectrometry. Anal Chem 89(17):8942–8950PubMedCrossRefPubMedCentralGoogle Scholar
  80. Moginger U et al (2018) Alterations of the human skin N- and O-glycome in basal cell carcinoma and squamous cell carcinoma. Front Oncol 8:70PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moini M (2007) Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques to mass spectrometry using a porous tip. Anal Chem 79(11):4241–4246PubMedCrossRefPubMedCentralGoogle Scholar
  82. Muramatsu T (1993) Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology 3(4):291–296PubMedCrossRefPubMedCentralGoogle Scholar
  83. Nilsson J (2016) Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 33(3):261–272PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867PubMedCrossRefPubMedCentralGoogle Scholar
  85. Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80(19):7534–7542PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pabst M et al (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal Chem 79(13):5051–5057PubMedCrossRefPubMedCentralGoogle Scholar
  87. Pabst M et al (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384(2):263–273PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pabst M et al (2012) Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology 22(3):389–399PubMedCrossRefPubMedCentralGoogle Scholar
  89. Packer NH et al (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 15(8):737–747PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pang PC et al (2011) Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 333(6050):1761–1764PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pucic M et al (2011) High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111 010090PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rath CB et al (2018) Flagellin glycoproteomics of the periodontitis associated pathogen Selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment rearrangement occurring on the glycopeptides. Mol Cell Proteomics 17(4):721–736PubMedCrossRefPubMedCentralGoogle Scholar
  93. Reiding KR et al (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86(12):5784–5793PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rini JM, Esko JD (2015) Glycosyltransferases and glycan-processing enzymes. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 65–75Google Scholar
  95. Royle L et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278(22):20140–20153PubMedCrossRefPubMedCentralGoogle Scholar
  96. Royle L et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rudd PM et al (2001) Glycosylation and the immune system. Science 291(5512):2370–2376PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ruhaak LR et al (2010) Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J Proteome Res 9(12):6655–6664PubMedCrossRefPubMedCentralGoogle Scholar
  99. Saeland E, van Kooyk Y (2011) Highly glycosylated tumour antigens: interactions with the immune system. Biochem Soc Trans 39(1):388–392PubMedCrossRefPubMedCentralGoogle Scholar
  100. Saphire E et al (2003) Crystal structure of an lntact human IgG: antibody asymmetry, flexibility, and a guide for HIV-1 vaccine design. In: Axford J (ed) Glycobiology and medicine. Springer, New York, pp 55–66CrossRefGoogle Scholar
  101. Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3–4):501–518PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schwarzer J, Rapp E, Reichl U (2008) N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Electrophoresis 29(20):4203–4214PubMedCrossRefPubMedCentralGoogle Scholar
  103. Seeberger PH (2015) Monosaccharide diversity. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 19–30Google Scholar
  104. Stadlmann J et al (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8(14):2858–2871PubMedCrossRefPubMedCentralGoogle Scholar
  105. Stavenhagen K, Kolarich D, Wuhrer M (2015) Clinical glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia 78(5–6):307–320PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sumer-Bayraktar Z et al (2011) N-glycans modulate the function of human corticosteroid-binding globulin. Mol Cell Proteomics 10(8):M111 009100PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sumer-Bayraktar Z et al (2012) Micro- and macroheterogeneity of N-glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum. Proteomics 12(22):3315–3327PubMedCrossRefPubMedCentralGoogle Scholar
  108. Szigeti M, Guttman A (2017) Automated N-glycosylation sequencing of biopharmaceuticals By capillary electrophoresis. Sci Rep 7(1):11663PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thanawiroon C et al (2004) Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J Biol Chem 279(4):2608–2615PubMedCrossRefPubMedCentralGoogle Scholar
  110. Theodoratou E et al (2016) Glycosylation of plasma IgG in colorectal cancer prognosis. Sci Rep 6:28098PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tomiya N et al (1988) Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem 171(1):73–90PubMedCrossRefPubMedCentralGoogle Scholar
  112. Toyoda M et al (2008) Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal Chem 80(13):5211–5218PubMedCrossRefPubMedCentralGoogle Scholar
  113. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130PubMedCrossRefPubMedCentralGoogle Scholar
  114. Varki A (2017) Biological roles of glycans. Glycobiology 27(1):3–49PubMedCrossRefPubMedCentralGoogle Scholar
  115. Varki A, Gagneux P (2015) Biological functions of glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor, New York, pp 77–88Google Scholar
  116. Varki A, Lowe JB (2009) Biological roles of glycans. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor, New YorkGoogle Scholar
  117. Wassarman PM (2011) The sperms sweet tooth. Science 333(6050):1708–1709PubMedCrossRefPubMedCentralGoogle Scholar
  118. West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217(19):3201–3216PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 --> 3)- and alpha(2 --> 6)-isomers. Rapid Commun Mass Spectrom 23(2):303–312PubMedCrossRefPubMedCentralGoogle Scholar
  120. Wilson NL et al (2002) Sequential analysis of N- and O-linked glycosylation of 2D-PAGE separated glycoproteins. J Proteome Res 1(6):521–529PubMedCrossRefPubMedCentralGoogle Scholar
  121. Wongtrakul-Kish K et al (2013) Characterization of N- and O-linked glycosylation changes in milk of the tammar wallaby (Macropus eugenii) over lactation. Glycoconj J 30(5):523–536PubMedCrossRefPubMedCentralGoogle Scholar
  122. Wuhrer M et al (2004) Nano-scale liquid chromatography-mass spectrometry of 2-aminobenzamide-labeled oligosaccharides at low femtomole sensitivity. Int J Mass Spectrom 232(1):51–57CrossRefGoogle Scholar
  123. Wuhrer M, de Boer AR, Deelder AM (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 28(2):192–206PubMedCrossRefPubMedCentralGoogle Scholar
  124. Zhuo Y, Bellis SL (2011) Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286(8):5935–5941PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kathirvel Alagesan
    • 1
  • Arun Everest-Dass
    • 1
  • Daniel Kolarich
    • 1
  1. 1.Institute for GlycomicsGriffith UniversitySouthportAustralia

Personalised recommendations