Advertisement

MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues

  • Richard R. DrakeEmail author
  • Connor A. West
  • Anand S. Mehta
  • Peggi M. Angel
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)

Abstract

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.

Keywords

Formalin-fixed paraffin-embedded tissue Fucosylation Glycomics Glycoprotein MALDI imaging mass spectrometry N-linked glycosylation Sialylation 

Abbreviations

FFPE

Formalin-fixed paraffin-embedded

FT-ICR

Fourier transform ion cyclotron resonance

Fuc

Fucose

GlcNAc

N-acetylglucosamine

GnT-III

N-acetylglucosaminyltransferase 3

GnT-IV

N-acetylglucosaminyltransferase 4

GnT-V

N-acetylglucosaminyltransferase 5

Hex

Hexose (e.g., mannose, glucose, galactose)

HexNAc

N-acetylhexosamine (e.g., N-acetylglucosamine or N-acetylgalactosamine)

LacNAc

Lactosamine (galactose and N-acetylglucosamine disaccharide)

MALDI-TOF MS

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

Man

Mannose

MS

Mass Spectrometry

MSI

Mass spectrometry imaging

NeuAc

N-acetylneuraminic acid (sialic acid)

NeuGc

N-glycolylneuraminic acid

PNGaseF

Peptide-N-glycosidase F

TFA

trifluoroacetic acid

TMA

Tissue microarray

Notes

Acknowledgment

This work was supported by the National Institutes of Health/National Cancer Institute R21 CA185799 to RRD and the National Institutions of Health/National Institute of General Medical Sciences P20GM103542 to PMA.

Literature Citations

  1. Angel PM, Caprioli RM (2013) Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52(22):3818–3828CrossRefGoogle Scholar
  2. Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, Drake RR (2017a) Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochim Biophys Acta 1865(7):927–935CrossRefGoogle Scholar
  3. Angel PM, Mehta A, Norris-Caneda K, Drake RR (2017b) MALDI imaging mass spectrometry of N-glycans and tryptic peptides from the same formalin-fixed, paraffin-embedded tissue section. Methods Mol Biol In pressGoogle Scholar
  4. Angel PM, Comte-Walters S, Ball LE, Talbot K, Mehta A, Brockbank KGM, Drake RR (2017c) Mapping extracellular matrix proteins in formalin-fixed, paraffin-embedded tissues by MALDI imaging mass spectrometry. J Proteome Res 17(1):635–646CrossRefGoogle Scholar
  5. Baker TC, Han J, Borchers CH (2017) Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr Opin Biotechnol 43:62–69CrossRefGoogle Scholar
  6. Berin A, Boughton BA (2017) Spatial metabolite profiling by matrix-assisted laser desorption ionization mass spectrometry imaging. Adv Exp Med Biol 965:291–322CrossRefGoogle Scholar
  7. Bern M, Brito AE, Pang PC, Rekhi A, Dell A, Haslam SM (2013) Polylactosaminoglycan glycomics: enhancing the detection of high-molecular-weight N-glycans in matrix-assisted laser desorption ionization time-of-flight profiles by matched filtering. Mol Cell Proteomics 12(4):996–1004CrossRefGoogle Scholar
  8. Briggs MT, Kuliwaba JS, Muratovic D, Everest-Dass AV, Packer NH, Findlay DM, Hoffmann P (2016) MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics 16(11–12):1736–1741CrossRefGoogle Scholar
  9. Briggs MT, Ho YY, Kaur G, Oehler MK, Everest-Dass AV, Packer NH, Hoffmann P (2017) N-Glycan matrix-assisted laser desorption/ionization mass spectrometry imaging protocol for formalin-fixed paraffin-embedded tissues. Rapid Commun Mass Spectrom 31(10):825–841CrossRefGoogle Scholar
  10. Bruntz RC, Lane AN, Higashi RM, Fan TW (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292(28):11,601–11,609CrossRefGoogle Scholar
  11. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833CrossRefGoogle Scholar
  12. Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM (2017) MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. Adv Cancer Res 134:85–116CrossRefGoogle Scholar
  13. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH (2016) N-Glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol Cell Proteomics 15(9):3003–3016CrossRefGoogle Scholar
  14. Fenn LS, McLean JA (2011) Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Physical Chemistry Chemical Physics 13(6):2196–2205CrossRefGoogle Scholar
  15. Gray CJ, Thomas B, Upton R, Migas LG, Eyers CE, Barran PE et al (2016) Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta 1860(8):1688–1709CrossRefGoogle Scholar
  16. Gustafsson OJ, Briggs MT, Condina MR, Winderbaum LJ, Pelzing M, McColl SR et al (2015) MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal Bioanal Chem 407:2127–2139CrossRefGoogle Scholar
  17. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450CrossRefGoogle Scholar
  18. Harvey DJ (2015) Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev 34(3):268–422CrossRefGoogle Scholar
  19. Heijs B, Holst S, Briaire-de Bruijn IH, van Pelt GW, de Ru AH, van Veelen PA et al (2016) Multimodal mass spectrometry imaging of N-Glycans and proteins from the same tissue section. Anal Chem 88:7745–7753CrossRefGoogle Scholar
  20. Holst S, Heijs B, de Haan N, van Zeijl RJ, Briaire-de Bruijn IH, van Pelt GW et al (2016) Linkage-specific in Situ Sialic Acid derivatization for N-Glycan mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. Anal Chem 88(11):5904–5913CrossRefGoogle Scholar
  21. Kawano S, Hashimoto K, Miyama T, Goto S, Kanehisa M (2005) Prediction of glycan structures from gene expression data based on glycosyltransferase reactions. Bioinformatics 21:3976–3982CrossRefGoogle Scholar
  22. Kinoshita M, Mitsui Y, Kakoi N, Yamada K, Hayakawa T, Kakehi K (2014) Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. J Proteome Res 13(2):1021–1033CrossRefGoogle Scholar
  23. Liu G, Neelamegham S (2014) A computational framework for the automated construction of glycosylation reaction networks. PLoS One 9(6):e100939CrossRefGoogle Scholar
  24. Loke I, Kolarich D, Packer NH, Thaysen-Andersen M (2016) Emerging roles of protein mannosylation in inflammation and infection. Mol Asp Med 51:31–55CrossRefGoogle Scholar
  25. Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29(8–9):609–618CrossRefGoogle Scholar
  26. Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW (2008) Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 283(25):17,298–17,313CrossRefGoogle Scholar
  27. Neelamegham S, Mahal LK (2016) Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr Opin Struct Biol 40:145–152CrossRefGoogle Scholar
  28. Nishikaze T (2017) Sensitive and structure-informative N-Glycosylation analysis by MALDI-MS; ionization, fragmentation, and derivatization. Mass Spectrom 6(1):A0060CrossRefGoogle Scholar
  29. Nyalwidhe JO, Betesh LR, Powers TW, Jones EE, White KY, Burch TC et al (2013) Increased bisecting N-acetylglucosamine and decreased branched chain glycans of N-linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression. Proteomics Clinical Applications 7:677–689PubMedPubMedCentralGoogle Scholar
  30. O’Connor PB, Costello CE (2001) A high pressure matrix-assisted laser desorption/ionization fourier transform mass spectrometry ion source for thermal stabilization of labile biomolecules. Rapid Commun Mass Spectrom 15:1862–1868CrossRefGoogle Scholar
  31. Ogrinc Potočnik N, Porta T, Becker M, Heeren RM, Ellis SR (2015) Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid Commun Mass Spectrom 29(23):2195–2203CrossRefGoogle Scholar
  32. Pearce OM, Läubli H (2016) Sialic acids in cancer biology and immunity. Glycobiology 26(2):111–128CrossRefGoogle Scholar
  33. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555CrossRefGoogle Scholar
  34. Powers TW, Jones EE, Betesh LR, Romano PR, Gao P, Copeland JA et al (2013) Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal Chem 85:9799–9806CrossRefGoogle Scholar
  35. Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS et al (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9(9):e106255CrossRefGoogle Scholar
  36. Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR (2015) Two-Dimensional N-Glycan distribution mapping of hepatocellular Carcinoma tissues by MALDI-Imaging mass spectrometry. Biomolecules 5(4):2554–2272CrossRefGoogle Scholar
  37. Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Analytical Chemistry 86:5784–5793CrossRefGoogle Scholar
  38. Rini J, Esko J, Varki A (2009) Chapter 5: Glycosyltransferases and Glycan-processing Enzymes. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  39. Ryczko MC, Pawling J, Chen R, Abdel Rahman AM, Yau K, Copeland JK, Zhang C, Surendra A, Guttman DS, Figeys D, Dennis JW (2016) Metabolic reprogramming by Hexosamine biosynthetic and Golgi N-Glycan branching pathways. Sci Rep 6:23043CrossRefGoogle Scholar
  40. Schneider M, Al-Shareffi E, Haltiwanger RS (2017) Biological functions of fucose in mammals. Glycobiology 27(7):601–618CrossRefGoogle Scholar
  41. Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3–4):501–518CrossRefGoogle Scholar
  42. Sekiya S, Wada Y, Tanaka K (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem 77(15):4962–4968CrossRefGoogle Scholar
  43. Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM (2016) Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods 104:69–78CrossRefGoogle Scholar
  44. Stanley P, Schachter H, Taniguchi N (2009) Chapter 8: N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of Glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  45. Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51CrossRefGoogle Scholar
  46. Wang D (2012) N-glycan cryptic antigens as active immunological targets in prostate cancer patients. J Proteomics Bioinformatics 5:90–95Google Scholar
  47. Wang D, Dafik L, Nolley R, Huang W, Wolfinger RD, Wang LX et al (2013) Anti-oligomannose antibodies as potential serum biomarkers of aggressive prostate cancer. Drug Dev Res 74:65–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Richard R. Drake
    • 1
    Email author
  • Connor A. West
    • 1
  • Anand S. Mehta
    • 1
  • Peggi M. Angel
    • 1
  1. 1.Department of Cell and Molecular Pharmacology and Experimental TherapeuticsMedical University of South CarolinaCharlestonUSA

Personalised recommendations