Synthesis of Glycosylated Metal Complexes for Probing Carbohydrate-Carbohydrate Interactions

  • Teruaki HasegawaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)


Densely packed carbohydrate clusters on cell surfaces play essential roles in varieties of bioprocesses. Little information has been, however, accumulated so far concerning their structural/functional details. In this chapter, we discuss artificial systems to investigate carbohydrate-carbohydrate interactions within/between the carbohydrate cluster(s). Among such artificial systems, much attention will be especially placed on glycosylated tris-bipyridine ferrous complexes for monitoring not only carbohydrate-carbohydrate interactions within the glycocluster but also their resultant conformational changes.


Carbohydrate-carbohydrate interactions Tris-bipyridine ferrous complex Dynamic combinatorial library Circular dichroism 


  1. Altamore TM, Fernández-García C, Gordon AH, Hübscher T, Promsawan N, Ryadnov MG, Doig AJ, Woolfson DN, Gallagher T (2011) Randomcoil: α-helix equilibria as a reporter for the LewisX–LewisX interaction. Angew Chem Int Ed 50:11167–11171CrossRefGoogle Scholar
  2. Chen Q, Cui Y, Zhang T, Cao J, Han B (2010) Fluorescent conjugated polyfluorene with pendant lactopyranosyl ligands for studies of Ca2+- mediated carbohydrate-carbohydrate interaction. Biomacromolecules 11:13–19CrossRefGoogle Scholar
  3. de la Fuente JM, Eaton P, Barrientos AG, Menéndez M, Penadés S (2005) Thermodynamic evidence for Ca2+ mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J Am Chem Soc 127:6192–6197Google Scholar
  4. Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S (1989) Specific Interaction between Le and Le determinants. J Biol Chem 264:9476–9484Google Scholar
  5. Gege C, Geyer A, Schmidt RR (2002) Carbohydrate-carbohydrate recognition between Lewis X blood group antigens, mediated by calcium ions. Eur J Org Chem 2475:2485Google Scholar
  6. Handa K, Hakomori S (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29:627–637CrossRefGoogle Scholar
  7. Hasegawa T, Sasaki T (2003) Glyco-helix: parallel lactose-lactose interactions stabilize an α-helical structure of multi-glycosylated peptide. Chem Commun 8:978–979Google Scholar
  8. Hasegawa T, Numata M, Asai M, Takeuchi M, Shinkai S (2005) Colorimetric calcium-response of β -lactosylated μ-oxo-bis-[5,15-mesodiphenylporphyrinatoiron(III)]. Tetrahedron 61:7783–7788CrossRefGoogle Scholar
  9. Jayaraman N, Maiti K, Naresh K (2013) Multivalent glycoliposomes and micelles to study carbohydrate–protein and carbohydrate–carbohydrate interactions. Chem Soc Rev 42:4640–4656CrossRefGoogle Scholar
  10. Lai C, Hütter J, Hsu C, Tanaka H, Varela-Aramburu S, De Cola L, Lepenies B, Seeberger PH (2016) Analysis of carbohydrate−carbohydrate interactions using sugar-functionalized silicon nanoparticles for cell imaging. Nano Lett 16:807–811CrossRefGoogle Scholar
  11. Lorenz B, de Cienfuegos LÁ, Oelkers M, Kriemen E, Brand C, Stephan M, Sunnick E, Yüksel D, Kalsani V, Kumar K, Werz DB, Janshoff A (2012) Model system for cell adhesion mediated by weak carbohydrate−carbohydrate interactions. J Am Chem Soc 134:3326–3329CrossRefGoogle Scholar
  12. Matsuura K, Kobayashi K (2004) Analysis of GM3-Gg3 interaction using clustered gycoconjugate models constructed from glycolipid monolayers and artificial glycoconjugate polymers. Glycoconj J 21:139–148CrossRefGoogle Scholar
  13. Matsuura K, Oda R, Kitakouji H, Kiso M, Kitajima K, Kobayashi K (2004) Surface plasmon resonance study of carbohydrate-carbohydrate interaction between various gangliosides and Gg3-carrying polystyrene. Biomacromolecules 5:937–941CrossRefGoogle Scholar
  14. Nonaka Y, Uruno R, Dai F, Matsuoka R, Nakamura M, Iwamura M, Iwabuchi H, Okada T, Chigira N, Amano Y, Hasegawa T (2016) Hexavalent glycoclusters having tris-bipyridine ferrous complex cores as minimum combinatorial libraries for probing carbohydrate-carbohydrate interactions. Tetrahedron 72:5456–5464CrossRefGoogle Scholar
  15. Otsuka A, Sakurai K, Hasegawa T (2009) Ferrocenes with two carbohydrate appendages at the upper and lower rings are useful for investigating carbohydrate–carbohydrate interactions. Chem Commun 36:5442–5444Google Scholar
  16. Pincet F, Bouar TL, Zhang Y, Esnault J, Mallet J, Perez E, Sinay P (2001) Ultraweak sugar-sugar interactions for transient cell adhesion. Biophys J 80:1354–1358CrossRefGoogle Scholar
  17. Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193CrossRefGoogle Scholar
  18. Reynolds AJ, Haines AH, Russell DA (2006) Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydratecarbohydrate interactions. Langmuir 22:1156–1163CrossRefGoogle Scholar
  19. Seah N, Santacroce PV, Basu A (2009) Probing the lactose·GM3 carbohydrate-carbohydrate interaction with glycodendrimers. Org Lett 11:559–562CrossRefGoogle Scholar
  20. Simpson GL, Gordon AH, Lindsay DM, Promsawan N, Crump MP, Mulholland K, Hayter BR, Gallagher T (2006) Glycosylated foldamers to probe the carbohydrate−carbohydrate interaction. J Am Chem Soc 128:10638–10639CrossRefGoogle Scholar
  21. Yu S, Kojima N, Hakomori S, Kudo S, Inoue S, Inoue Y (2002) Binding of rainbow trout sperm to egg is mediated by strong carbohydrate-to−+carbohydrate interaction between (KDN)GM3 (deaminated neuraminyl ganglioside) and Gg3-like epitope. PNAS 99:2854–2859CrossRefGoogle Scholar
  22. Zhao J, Liu Y, Park H, Boggs JM, Basu A (2012) Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate−carbohydrate interaction using model systems and cellular binding studies. Bioconjug Chem 12:1166–1173CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Life SciencesToyo UniversityItakura-machi, Ora-gunJapan
  2. 2.Bio-Nano Electronics Research CentreToyo UniversityKawagoe, SaitamaJapan

Personalised recommendations