Advertisement

Effects of N-Glycans on Glycoprotein Folding and Protein Dynamics

  • Yoko Amazaki
  • Hien Minh Nguyen
  • Ryo Okamoto
  • Yuta Maki
  • Yasuhiro KajiharaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1104)

Abstract

This chapter describes the folding of synthetic homogeneous glycosylpolypeptides into glycoproteins depending on the position and number of glycosylation sites and oligosaccharide structures. To evaluate the role of oligosaccharides in protein folding, we synthesized small glycoprotein models, homogeneous misfolded glycoproteins, and erythropoietins. In addition to these chemical syntheses, this chapter introduces a unique method for 15N-labeling of synthetic glycoproteins to enable structural analysis. Based on experimental results, it can be suggested that N-glycans stabilize the structure of glycoproteins.

Keywords

Glycoprotein Glycoprotein folding Erythropoietin Crambin Ovomucoid Fractalkine 

References and Note

  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35(2):74–82.  https://doi.org/10.1016/j.tibs.2009.10.001 CrossRefPubMedGoogle Scholar
  2. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230CrossRefGoogle Scholar
  3. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM (1991) Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci 88(2):502–506CrossRefGoogle Scholar
  4. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) CDF finding. Nature 385:640–644CrossRefGoogle Scholar
  5. Culyba EK, Price JL, Hanson SR, Dhar A, Wong CH, Gruebele M, Powers ET, Kelly JW (2011) Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331(6017):571–575.  https://doi.org/10.1126/Science.1198461 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779CrossRefGoogle Scholar
  7. Dedola S, Izumi M, Makimura Y, Seko A, Kanamori A, Sakono M, Ito Y, Kajihara Y (2014) Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme. Angew Chem Int Ed 53(11):2883–2887.  https://doi.org/10.1002/anie.201309665 CrossRefGoogle Scholar
  8. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33(19):5984–6003.  https://doi.org/10.1021/bi00185a040 CrossRefPubMedGoogle Scholar
  9. Hackenberger CPR, Friel CT, Radford SE, Imperiali B (2005) Semisynthesis of a glycosylated Im7 analogue for protein folding studies. J Am Chem Soc 127:12882–12889CrossRefGoogle Scholar
  10. Hebert DN, Bernasconi R, Molinari M (2010) ERAD substrates: which way out? Semin Cell Dev Biol 21(5):526–532CrossRefGoogle Scholar
  11. Hien Minh N, Izumi M, Sato H, Okamoto R, Kajihara Y (2017) Chemical synthesis of glycoproteins with the specific installation of gradient-enriched 15N-labeled amino acids for getting insights into glycoprotein behavior. Chem Eur J 23(27):6579–6585.  https://doi.org/10.1002/chem.201606049 CrossRefGoogle Scholar
  12. Hoover DM, Mizoue LS, Handel TM, Lubkowski J (2000) The crystal structure of the chemokine domain of fractalkine shows a novel quaternary arrangement. J Biol Chem 275:23187–23193CrossRefGoogle Scholar
  13. Huang YW, Yang HI, Wu YT, Hsu TL, Lin TW, Kelly JW, Wong CH (2017) Residues comprising the enhanced aromatic sequon influence protein N-glycosylation efficiency. J Am Chem Soc 139(37):12947–12955.  https://doi.org/10.1021/jacs.7b03868 CrossRefPubMedGoogle Scholar
  14. Izumi M, Makimura Y, Dedola S, Seko A, Kanamori A, Sakono M, Ito Y, Kajihara Y (2012) Chemical synthesis of intentionally misfolded homogeneous glycoprotein: a unique approach for the study of glycoprotein quality control. J Am Chem Soc 134(17):7238–7241.  https://doi.org/10.1021/ja3013177 CrossRefPubMedGoogle Scholar
  15. Kajihara Y, Suzuki Y, Yamamoto N, Sasaki K, Sakakibara T, Juneja LR (2004) Prompt chemoenzymatic synthesis of diverse complex-type oligosaccharides and its application to the solid-phase synthesis of a glycopeptide with asn-linked sialyl-undeca- and asialo-nonasaccharides. Chem Eur J 10(4):971–985.  https://doi.org/10.1002/chem.200305115 CrossRefPubMedGoogle Scholar
  16. Kajihara Y, Tanabe Y, Sasaoka S, Okamoto R (2012) Homogeneous Human Complex-Type Oligosaccharides in Correctly Folded Intact Glycoproteins: Evaluation of Oligosaccharide Influence On Protein Folding, Stability, and Conformational Properties. Chem Eur J 18(19):5944–5953CrossRefGoogle Scholar
  17. Kasai T, Koshiba S, Yokoyama J, Kigawa T (2015) Stable isotope labeling strategy based on coding theory. J Biomol NMR 63(2):213–221CrossRefGoogle Scholar
  18. Makimura Y, Kiuchi T, Izumi M, Dedola S, Ito Y, Kajihara Y (2012) Efficient synthesis of glycopeptide-α-thioesters with a high-mannose type oligosaccharide by means of tert-Boc-solid phase peptide synthesis. Carbohydr Res 364:41–48CrossRefGoogle Scholar
  19. Martin G, Ulrich V, Manfred N, Roland W, Harald SC (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol 42:117–131CrossRefGoogle Scholar
  20. Mizoue LS, Bazan JF, Johnson EC, Handel TM (1999) CDF NMR. Biochemistry 38:1402–1414CrossRefGoogle Scholar
  21. Murakami M, Kiuchi T, Nishihara M, Tezuka K, Okamoto R, Izumi M, Kajihara Y (2016) Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity. Sci Adv 2:e1500678.  https://doi.org/10.1126/sciadv.1500678 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical Synthesis of an Erythropoietin Glycoform Containing a Complex-type Disialyloligosaccharide. Angew Chem Int Ed 51(15):3567–3572CrossRefGoogle Scholar
  23. Nguyen HM, Izumi M, Sato H, Okamoto R, Kajihara Y (2017) Chemical synthesis of glycoproteins with the specific installation of gradient-enriched 15N-labeled amino acids for getting insights into glycoprotein behavior. Chem Eur J 23(27):6579–6585.  https://doi.org/10.1002/chem.201606049 CrossRefGoogle Scholar
  24. Okamoto R, Mandal K, Ling M, Luster AD, Kajihara Y, Kent SBH (2014a) Total chemical synthesis and biological activities of glycosylated and non-glycosylated forms of the chemokines CCL1 and Ser-CCL1. Angew Chem Int Ed 53(20):5188–5193.  https://doi.org/10.1002/anie.201310574 CrossRefGoogle Scholar
  25. Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH (2014b) (Quasi-)racemic X-ray structures of glycosylated and non-glycosylated forms of the chemokine Ser-CCL1 prepared by total chemical synthesis. Angew Chem Int Ed 53(20):5194–5198.  https://doi.org/10.1002/anie.201400679 CrossRefGoogle Scholar
  26. Park SS, Park J, Ko J, Chen L, Meriage D, Crouse-Zeineddini J, Wong W, Kerwin BA (2009) Biochemical assessment of erythropoietin products from Asia versus US Epoetin alfa manufactured by Amgen. J Pharm Sci 98(5):1688–1699.  https://doi.org/10.1002/jps.21546 CrossRefPubMedGoogle Scholar
  27. Phan AT, Patel DJ (2002) A site-specific low-enrichment 15N,13C isotope-labeling approach to unambiguous NMR spectral assignments in nucleic acids. J Am Chem Soc 124(7):1160–1161CrossRefGoogle Scholar
  28. Price JL, Powers DL, Powers ET, Kelly JW (2011) Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc Natl Acad Sci U S A 108(34):14127–14132., S14127/14121-S14127/14127.  https://doi.org/10.1073/pnas.1105880108 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94(8):1626–1635.  https://doi.org/10.1002/jps.20319 CrossRefPubMedGoogle Scholar
  30. Teeter MM, Mazer JA, L’Italien JJ (1981) Primary structure of the hydrophobic plant protein crambin. Biochemistry 20(19):5437–5443.  https://doi.org/10.1021/bi00522a013 CrossRefPubMedGoogle Scholar
  31. Tirado-Rives J, Jorgensen WL (1990) Molecular dynamics of proteins with the OPLS potential functions. Simulation of the third domain of silver pheasant ovomucoid in water. J Am Chem Soc 112(7):2773–2781.  https://doi.org/10.1021/ja00163a046 CrossRefGoogle Scholar
  32. Unverzagt C, Kajihara Y (2013) Chemical assembly of N-glycoproteins: a refined toolbox to address a ubiquitous posttranslational modification. Chem Soc Rev 42(10):4408–4420CrossRefGoogle Scholar
  33. Varki A (2017) Biological roles of glycans. Glycobiology 27(1):3–49.  https://doi.org/10.1093/glycob/cww086 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkCrossRefGoogle Scholar
  35. Yabuki T, Kigawa T, Dohmae N, Takio K, Terada T, Ito Y, Laue ED, Cooper JA, Kainosho M, Yokoyama S (1998) Dual amino acid-selective and site-directed stable isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J Biomol NMR 11(3):295–306CrossRefGoogle Scholar
  36. Yamashita K, Kamerling JP, Kobata A (1983) Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains. J Biol Chem 258(5):3099–3106PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yoko Amazaki
    • 1
  • Hien Minh Nguyen
    • 2
  • Ryo Okamoto
    • 1
  • Yuta Maki
    • 1
  • Yasuhiro Kajihara
    • 1
    Email author
  1. 1.Department of ChemistryOsaka UniversityToyonakaJapan
  2. 2.School of Medicine, Vietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations