UV-B Radiation-Induced Changes in Tea Metabolites and Related Gene Expression

  • Fang-yuan FanEmail author
  • Chun-lin Li
  • Zhou Luo
  • Gui-zhen Tang


UV-B radiation is an inevitable abiotic stress, which could induce a series of changes in metabolites and related metabolisms in plants. UV-B-induced metabolic changes in leaves of Camellia sinensis affect the tea quality. This review summarizes the recent investigations into UV-B radiation-induced changes in tea metabolites and their related gene expression, involving in flavonoids, amino acids, and volatile compounds. UV-B radiation induces flavonoid accumulation by increasing expression of key genes in general phenylpropanoid pathway and flavonoid pathway. The UV-B radiation-induced gene expressions in flavonoid biosynthesis pathway also are affected by transcription factors and endogenous phytohormones signaling pathway. Changes of individual amino acids under UV-B radiation exhibit significant variation among different plants, and their responses to UV-B radiation dose are different. These regulations involve in modulation of gene expressions related to GABA shunt and tricarboxylic acid cycle (TCA). Volatile compounds in Camellia sinensis under UV-B radiation are regulated by both metabolites biosynthesis and volatile glycosidic-precursors hydrolysis. In a word, UV-B radiation influences metabolisms in tea in a rather complex way. More researches on UV-B-induced transcriptional regulation, endogenous-phytohormone signal regulation, metabolisms diversions regulation, etc. are needed in the future.


UV-B radiation Tea polyphenols Amino acids Volatile compounds Signal regulation Gene expression 



We thank Eric Scott (Tufts University, USA) for improvements and corrections on the manuscript.


  1. Alasalvar C, Topal B, Serpen A et al (2012) Flavor characteristics of seven grades of black tea produced in Turkey. J Agric Food Chem 60(25):6323PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al-Quraan NA (2015) GABA shunt deficiencies and accumulation of reactive oxygen species under UV treatments: insight from Arabidopsis thaliana calmodulin mutants. Acta Physiol Plant 37(4):86CrossRefGoogle Scholar
  3. Anderson JG, Wilmouth DM, Smith JB et al (2012) UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor. Science 337(6096):835PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baba SA, Vishwakarma RA, Ashraf N (2017) Functional characterization of CsBGlu12, a β-glucosidase from Crocus sativus provides insights into its role in abiotic stress through accumulation of antioxidant flavonols. J Biol Chem 292(11):jbc.M116.762161CrossRefGoogle Scholar
  5. Baldermann S, Fleischmann P, Bolten M et al (2009) Centrifugal precipitation chromatography – a powerful technique for the isolation of active enzymes from tea leaves (Camellia sinensis). J Chromatogr A 1216(19):4263–4267PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ballaré CL, Caldwell MM, Flint SD et al (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10(2):226–241PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bashri G, Singh M, Mishra RK et al (2018) Kinetin regulates UV-B-induced damage to growth, photosystem II photochemistry, and nitrogen metabolism in tomato seedlings. J Plant Growth Regul 37(1):233–245CrossRefGoogle Scholar
  8. Becatti E, Petroni K, Giuntini D et al (2009) Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. J Agric Food Chem 57(22):10979PubMedCrossRefPubMedCentralGoogle Scholar
  9. Berli FJ, Moreno D, Piccoli P et al (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33(1):1PubMedPubMedCentralGoogle Scholar
  10. Berli FJ, Fanzone M, Piccoli P (2011) Solar UV-B and ABA Are Involved in Phenol Metabolism of Vitis vinifera L Increasing Biosynthesis of Berry Skin Polyphenols. J Agric Food Chem 59(9):4874–4884PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126(3):1105–1115PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carbonell-bejerano P, Diago MP, Martínezabaigar J et al (2014) Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biol 14(1):183PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181(4):871–879PubMedCrossRefPubMedCentralGoogle Scholar
  15. Christie JM, Jenkins GI (1996) Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 8(9):1555–1567PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1:118–128PubMedCrossRefPubMedCentralGoogle Scholar
  17. Czemmel S, Stracke R, Weisshaar B et al (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530PubMedPubMedCentralCrossRefGoogle Scholar
  18. Delfine S, Csiky O, Seufert G et al (2010) Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146(1):27–36CrossRefGoogle Scholar
  19. Dolzhenko Y, Bertea CM, Occhipinti A et al (2010) UV-B modulates the interplay between terpenoids and flavonoids in peppermint (piperita L.). J Photochem Photobiol B Biol 100(2):67CrossRefGoogle Scholar
  20. Dong F, Fu X, Watanabe N et al (2016) Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21(2):124PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dudareva N, Negre F, Nagegowda DA et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440CrossRefGoogle Scholar
  22. Eva H, Jansen MAK, Ake S (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18(2):107–115CrossRefGoogle Scholar
  23. Favory J, Stec A, Gruber H et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28(5):591–601PubMedPubMedCentralCrossRefGoogle Scholar
  24. Felfe C, Schemainda M, Baldermann S et al (2011) Metabolism of carotenoid degradation in leaves of Camellia sinensis—Functional and biochemical modifications. J Food Compos Anal 24(6):821–825CrossRefGoogle Scholar
  25. Gil M, Pontin M, Berli F et al (2012) Metabolism of terpenes in the response of grape (Vitis vinifera, L.) leaf tissues to UV-B radiation. Phytochemistry 77(15–16):89–98PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gil M, Bottini R, Berli F et al (2013) Volatile organic compounds characterized from grapevine ( Vitis vinifera, L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry 96(12):148PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gil M, Bottini R, Pontin M et al (2014) Solar UV-B radiation modifies the proportion of volatile organic compounds in flowers of field-grown grapevine (Vitis vinifera, L.) cv. Malbec. Plant Growth Regul 74(2):193–197CrossRefGoogle Scholar
  28. Giuntini D, Graziani G, Lercari B et al (2005) Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. J Agric Food Chem 53(8):3174–3181PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gollop R, Farhi S, Perl A (2001) Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Sci 161(3):579–588CrossRefGoogle Scholar
  30. Götz T, Sandmann G, Römer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50(1):127–140CrossRefGoogle Scholar
  31. Guo W, Sakata K, Watanabe N et al (1993) Geranyl 6-O-β-d-xylopyranosyl-β-d-glucopyranoside isolated as an aroma precursor from tea leaves for oolong tea. Phytochemistry 33(6):1373–1375PubMedCrossRefGoogle Scholar
  32. Guo W, Hosoi R, Sakata K et al (1994) (S)-linalyl, 2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. Biosci Biotechnol Biochem 58(8):1532–1534PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hagedorn CH, Phang JM (1983) Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate. Arch Biochem Biophys 225(1):95–101PubMedCrossRefGoogle Scholar
  34. Hampel D, Mosandl A (2005) Wüst, A, M. Induction of de Novo Volatile Terpene Biosynthesis via Cytosolic and Plastidial Pathways by Methyl Jasmonate in Foliage of Vitis vinifera L. J Agric Food Chem 53(7):2652–2657PubMedCrossRefGoogle Scholar
  35. Hao G, Du X, Zhao F et al (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Org Cult 97(2):175–185CrossRefGoogle Scholar
  36. Hectors K, Prinsen E, Coen WD et al (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175(2):255–270PubMedCrossRefGoogle Scholar
  37. Hofmann RW, Swinny EE, Bloor SJ et al (2000) Responses of nine Trifolium repens L. populations to ultraviolet-B radiation: differential flavonol glycoside accumulation and biomass production. Ann Bot 86(3):527–537CrossRefGoogle Scholar
  38. Hsieh MM, Chen SM (2007) Determination of amino acids in tea leaves and beverages using capillary electrophoresis with light-emitting diode-induced fluorescence detection. Talanta 73(2):326–331PubMedCrossRefGoogle Scholar
  39. Inostroza-Blancheteau C, Acevedo P, Loyola R et al (2016) Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves. Plant Physiol Biochem 107:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jang J, Yang YC, Zhang GH et al (2010) Effect of ultra-violet B on release of volatiles in tea leaf. Int J Food Prop 13(3):608–617CrossRefGoogle Scholar
  41. Joubert C, Young PR, Eyéghé-Bickong HA et al (2016) Field-grown grapevine berries use carotenoids and the associated xanthophyll cycles to acclimate to UV exposure differentially in high and low light (shade) conditions. Front Plant Sci 7(286):786PubMedPubMedCentralGoogle Scholar
  42. Kakani VG, Reddy KR, Zhao D et al (2003) Field crop responses to ultraviolet-B radiation: a review. Agric Forest Meteorol 120(1–4):191–218CrossRefGoogle Scholar
  43. Kim BG, Kim JH, Kim J et al (2008) Accumulation of flavonols in response to ultraviolet-B irradiation in soybean is related to induction of flavanone 3-beta-hydroxylase and flavonol synthase. Mol Cells 25(2):247–252PubMedPubMedCentralGoogle Scholar
  44. Kusano M, Tohge T, Fukushima A et al (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J Cell Mol Biol 67(2):354–369CrossRefGoogle Scholar
  45. Laube JC, Newland MJ, Hogan C et al (2014) Newly detected ozone-depleting substances in the atmosphere. Nat Geosci 7(4):266–269CrossRefGoogle Scholar
  46. Li J, Ou-Lee TM, Raba R et al (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2):171–179PubMedPubMedCentralCrossRefGoogle Scholar
  47. Li YY, Jiang CJ, Wan XC et al (2005) Purification and partial characterization of β-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze). Acta Biochim 37(6):363–370Google Scholar
  48. Li CF, Zhu Y, Yu Y et al (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16(1):560PubMedPubMedCentralCrossRefGoogle Scholar
  49. Liu M, Li X, Liu Y et al (2013) Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica. Plant Physiol Biochem 73(6):161–167PubMedCrossRefGoogle Scholar
  50. Liu S, Ju J, Xia G (2014) Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene 543(1):145–152PubMedCrossRefGoogle Scholar
  51. Liu H, Cao X, Liu X et al (2017) UV-B irradiation differentially regulates terpene synthases and terpene content of peach. Plant Cell Environ 40(10):2261–2275PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ma SJ, Watanabe N, Yagi A et al (2001) The (3R,9R)-3-hydroxy-7,8-dihydro-beta-ionol disaccharide glycoside is an aroma precursor in tea leaves. Phytochemistry 56(8):819–825PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mackerness SAH (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 32(1):27–39CrossRefGoogle Scholar
  54. Mackerness SAH, John CF, Jordan B et al (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489(2–3):237CrossRefGoogle Scholar
  55. Martin DM, Aubourg S, Schouwey MB et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10(1):226PubMedPubMedCentralCrossRefGoogle Scholar
  56. Martínez-Lüscher J, Morales F, Delrot S et al (2013) Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Sci 213(4):114PubMedCrossRefGoogle Scholar
  57. Martínez-Lüscher J, Torres N, Hilbert G et al (2014) Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 102(6):106–114PubMedCrossRefPubMedCentralGoogle Scholar
  58. Martinez-Zapater JM, Ruben B, Rita F et al (2010) Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 10(1):224PubMedPubMedCentralCrossRefGoogle Scholar
  59. Matus JT, Loyola R, Vega A et al (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60(3):853PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mehrtens F, Kranz H, Bednarek P et al (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mishra V, Mishra P, Srivastava G et al (2011) Effect of dimethoate and UV-B irradiation on the response of antioxidant defense systems in cowpea (Vigna unguiculata L.) seedlings. Pestic Biochem Physiol 99(2):118–123CrossRefGoogle Scholar
  62. Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490PubMedCrossRefPubMedCentralGoogle Scholar
  63. Mizutani M, Sakata K (2002) Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol 130(4):2164–2176PubMedPubMedCentralCrossRefGoogle Scholar
  64. Moerkercke AV, Steensma P, Schweizer F et al (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci U S A 112(26):8130–8135PubMedPubMedCentralCrossRefGoogle Scholar
  65. Moon JH, Watanabe NY, Yagi A, Sakata K (1996) Studies on aroma formation mechanism in oolong tea. 6. cis- and trans-linalool 3,7-oxides and methyl salicylate glycosides and (z)-3-hexenyl beta-d-glucopyranoside as aroma precursors from tea leaves for oolong tea. Biosci Biotechnol Biochem 60(11):1815–1819PubMedCrossRefPubMedCentralGoogle Scholar
  66. Neugart S, Zietz M, Schreiner M et al (2012) Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. Physiol Plant 145(4):582–593PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nishikitani M, Kubota K, Kobayashi A et al (1996) Geranyl 6-O-alpha-L-Arabinopyranosyl-beta-D -glucopyranoside isolated as an aroma precursor from leaves of a green tea cultivar. Biosci Biotechnol Biochem 60(5):929–931PubMedCrossRefPubMedCentralGoogle Scholar
  68. Nishikitani M, Wang D, Kubota K et al (1999) (Z)-3-hexenyl and trans-linalool 3,7-oxide beta-primeverosides isolated as aroma precursors from leaves of a green tea cultivar. Biosci Biotechnol Biochem 63(9):1631–1633PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ohgami S, Ono E, Toyonaga H et al (2014) Identification and characterization of Camellia sinensis glucosyltransferase, UGT73A17: a possible role in flavonol glucosylation. Plant Biotechnol 31(5):573–578CrossRefGoogle Scholar
  70. Oravecz A, Baumann A, Máté Z et al (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18(8):1975–1990PubMedPubMedCentralCrossRefGoogle Scholar
  71. Petrussa E, Braidot E, Zancani M et al (2013) Plant flavonoids—Biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950PubMedPubMedCentralCrossRefGoogle Scholar
  72. Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25(4):91–132PubMedCrossRefPubMedCentralGoogle Scholar
  73. Rani A, Singh K, Ahuja PS et al (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495(2):205–210CrossRefGoogle Scholar
  74. Rastogi RP, Richa KA et al (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010(6551):592980PubMedPubMedCentralGoogle Scholar
  75. Rizzini L, Favory JJ, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefGoogle Scholar
  76. Robinson SA, Slade AP, Fox GG et al (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol 95(2):509–516PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ryan KG, Swinny EE, Markham KR et al (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59(1):23–32PubMedCrossRefPubMedCentralGoogle Scholar
  78. Saradhi PP (1995) Alia, Arora S, et al. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sarkar D, Bhowmik PC (2011) Young-In-Kwon, et al. The role of proline-associated pentose phosphate pathway in cool-season turfgrasses after UV-B exposure. Environ Exp Bot 70(2–3):251–258CrossRefGoogle Scholar
  80. Scharbert S, Hofmann T (2005) Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J Agric Food Chem 53(13):5377–5384PubMedCrossRefPubMedCentralGoogle Scholar
  81. Scharbert S, Holzmann N, Hofmann T (2004) Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem 52(11):3498PubMedCrossRefPubMedCentralGoogle Scholar
  82. Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167(2):295–306PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schuh C, Schieberle P (2006) Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J Agric Food Chem 54(3):916–924PubMedCrossRefPubMedCentralGoogle Scholar
  84. Schwartz SH, Qin X, Zeevaart JA (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276(27):25208PubMedCrossRefPubMedCentralGoogle Scholar
  85. Seungjin MA, Mizutani M, Hiratake J et al (2001) Substrate specificity of β-primeverosidase, a key enzyme in aroma formation during oolong tea and black tea manufacturing. Biosci Biotechnol Biochem 65(12):2719–2729CrossRefGoogle Scholar
  86. Shen SL, Yin XR, Zhang B et al (2016) CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange. J Exp Bot 67(14):4105–4115PubMedPubMedCentralCrossRefGoogle Scholar
  87. Simkin AJ, Underwood BA, Auldridge M et al (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136(3):3504PubMedPubMedCentralCrossRefGoogle Scholar
  88. Singh K, Rani A, Kumar S et al (2008) An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with catechins content in tea (Camellia sinensis (L.) O. Kuntze). Tree Physiol. Tree Physiol 28(9):1349–1356PubMedCrossRefPubMedCentralGoogle Scholar
  89. Singh K, Rani A, Paul A et al (2009) Differential display mediated cloning of anthocyanidin reductase gene from tea (Camellia sinensis) and its relationship with the concentration of epicatechins. Tree Physiol 29(6):837PubMedCrossRefPubMedCentralGoogle Scholar
  90. Singh VP, Srivastava PK, Prasad SM (2012) UV-B induced differential effect on growth and nitrogen metabolism in two cyanobacteria under copper toxicity. Cell Mol Biol (Noisy-le-Grand) 58(1):85–95Google Scholar
  91. Mackerness SAH (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 32(1):27–39CrossRefGoogle Scholar
  92. Solovchenko A, Schmitzeiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54(389):1977–1984PubMedCrossRefPubMedCentralGoogle Scholar
  93. Spyropoulou EA, Haring MA, Schuurink RC (2014) RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 15(1):402PubMedPubMedCentralCrossRefGoogle Scholar
  94. Stracke R, Favory JJ, Gruber H et al (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33(1):88–103PubMedPubMedCentralGoogle Scholar
  95. Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50(2):168–173CrossRefGoogle Scholar
  96. Sun Z, Chen W, Chen Z et al (2011) A role for Ethylene – Insensitive 2, gene in the regulation of the ultraviolet-B response in Arabidopsis. Acta Physiol Plant 33(3):1025–1030CrossRefGoogle Scholar
  97. Takeda J, Abe S, Hirose Y et al (1993) Effect of light and 2,4-dichlorophenoxyacetic acid on the level of mRNAs for phenylalanine ammonia-lyase and chalcone synthase in carrot cells cultured in suspension. Physiol Plant 89(1):4–10CrossRefGoogle Scholar
  98. Takeda J, Obi I, Yoshida K (1994) Action spectra of phenylalanine ammonia-lyase and chalcone synthase expression in carrot cells in suspension. Physiol Plant 91(3):517–521CrossRefGoogle Scholar
  99. Takeda J, Ozeki Y, Yoshida K (1997) Action spectrum for induction of promoter activity of phenylalanine ammonia-lyase gene by UV in carrot suspension cells. Photochem Photobiol 66(4):464–470PubMedCrossRefPubMedCentralGoogle Scholar
  100. Takeuchi A, Matsumoto S, Hayatsu M (1994) Chalcone synthase from Camellia sinensis: isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant Cell Physiol 35(7):1011–1018PubMedPubMedCentralGoogle Scholar
  101. Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D et al (2014) Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ 37(2):451PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tegelberg R, Julkunen-Tiitto R, Aphalo PJ (2004) Red : far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ 27(8):1005–1013CrossRefGoogle Scholar
  103. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304PubMedCrossRefPubMedCentralGoogle Scholar
  104. Valadier MH, Yoshida A, Grandjean O et al (2010) Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leaves. FEBS J 275(12):3193–3206CrossRefGoogle Scholar
  105. Wade HK, Bibikova TN, Valentine WJ et al (2001) Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant J Cell Mol Biol 25(6):675–685CrossRefGoogle Scholar
  106. Wang D, Ando K, Morita K, et al (1994) Optical isomers of linalool and linalool oxides in tea aroma. Validation of Shipmo7 & Precal with the Cpf Hydroelastic Model 58(11):2050–2053CrossRefGoogle Scholar
  107. Wang D, Kurasawa E, Yamaguchi Y et al (2001) Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem 49(4):1900PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wang Y, Feng H, Qu Y et al (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57(1–2):51–61CrossRefGoogle Scholar
  109. Wang YS, Xu YJ, Gao LP et al (2014) Functional analysis of Flavonoid 3′,5′-hydroxylase from Tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biol 14(1):347PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wang CH, Zheng LP, Tian H et al (2016) Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza, hairy roots. J Photochem Photobiol B Biol 159:93–100CrossRefGoogle Scholar
  111. Wei K, Wang L, Zhang C et al (2015) Transcriptome analysis reveals key flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis. PLoS One 10(9):e0137925PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wen PF, Ji W, Gao MY et al (2015) Accumulation of flavanols and expression of leucoanthocyanidin reductase induced by postharvest UV-C irradiation in grape berry. Genet Mol Res Gmr 14(3):7687PubMedCrossRefPubMedCentralGoogle Scholar
  113. Yang Z, Baldermann S, Watanabe N (2013) Recent studies of the volatile compounds in tea. Food Res Int 53(2):585–599CrossRefGoogle Scholar
  114. Zagoskina NV, Alyavina AK, Gladyshko TO et al (2005) Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis ). Russ J Plant Physiol 52(6):731–739CrossRefGoogle Scholar
  115. Zheng XQ, Jin J, Chen H, et al (2008) Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L) O. Kuntze. Afr J Biotechnol 7(18):3283–3287Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fang-yuan Fan
    • 1
    Email author
  • Chun-lin Li
    • 1
  • Zhou Luo
    • 1
  • Gui-zhen Tang
    • 1
  1. 1.Zhejiang University Tea Research InstituteHangzhouChina

Personalised recommendations