Idiopathic Intracranial Hypertension

  • Ruowu Hou
  • Ningli WangEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


Idiopathic intracranial hypertension (IIH) is the disease with characteristics of higher intracranial pressure (ICP), but the pathogenic mechanism is still not clear. In general population the incidence is about 0.5–2 per 100,000 people per year [1–4]; however, in the obese women, it is around 12–20 per 100,000 people per year [1, 2, 5]. Its typical symptoms include headache, visual dysfunction, pulsatile tinnitus, and neck pain, and the vital one is the visual loss. As the visual acuity loss is highly variable, from mild to severity, and in general the process takes some time, which can cause delays in diagnosis and treatment, it could lead to considerable visual morbidity. The emblematic sign is the papilloedema, but this is not the only sign of IIH, and making diagnosis should exclude the other identifiable secondary causes such as intracranial tumor and hemorrhage. At present, the updated modified Dandy criteria [6] are usually considered the optimal diagnosis criteria. There are numerous therapeutic methods to treat IIH, but there is no consensus on the best method which is accepted by doctors who come from different departments involving ophthalmology, neurology, and neurosurgery.


  1. 1.
    Raoof N, et al. The incidence and prevalence of idiopathic intracranial hypertension in Sheffield. UK Eur J Neurol. 2011;18(10):1266–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Durcan FJ, Corbett JJ, Wall M. The incidence of pseudotumor cerebri. Population studies in Iowa and Louisiana. Arch Neurol. 1988;45(8):875–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Idiculla T, et al. The incidence and prevalence of idiopathic intracranial hypertension in south Sharaqiah region, Oman. Oman J Ophthalmol. 2013;6(3):189–92.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kesler A, et al. The incidence of idiopathic intracranial hypertension in Israel from 2005 to 2007: results of a nationwide survey. Eur J Neurol. 2014;21(8):1055–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Radhakrishnan K, et al. Idiopathic intracranial hypertension (pseudotumor cerebri). Descriptive epidemiology in Rochester, Minn, 1976 to 1990. Arch Neurol. 1993;50(1):78–80.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81(13):1159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sinclair AJ, et al. Low energy diet and intracranial pressure in women with idiopathic intracranial hypertension: prospective cohort study. BMJ. 2010;341:c2701.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Newborg B. Pseudotumor cerebri treated by rice reduction diet. Arch Intern Med. 1974;133(5):802–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Malm J, et al. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology. 1992;42(4):851–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Eisenberg HM, McComb JG, Lorenzo AV. Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. J Neurosurg. 1974;40(3):381–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Johnston I. The definition of reduced CSF absorption syndrome: a reappraisal of benign intracranial hypertension and related conditions. Med Hypotheses. 1975;1(1):10–4.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ludemann W, et al. Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005;21(2):96–103.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Zakharov A, Papaiconomou C, Johnston M. Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat Res Biol. 2004;2(3):139–46.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Johnston M, et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004;1(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Johnston M, Papaiconomou C. Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci. 2002;17:227–30.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Morris PP, et al. Transverse Sinus Stenosis Is the Most Sensitive MR Imaging Correlate of Idiopathic Intracranial Hypertension. AJNR Am J Neuroradiol. 2017;38(3):471–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Carvalho GB, et al. A new index for the assessment of transverse sinus stenosis for diagnosing idiopathic intracranial hypertension. J Neurointerv Surg. 2017;9(2):173–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Riggeal BD, et al. Clinical course of idiopathic intracranial hypertension with transverse sinus stenosis. Neurology. 2013;80(3):289–95.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ridha MA, et al. MRI findings of elevated intracranial pressure in cerebral venous thrombosis versus idiopathic intracranial hypertension with transverse sinus stenosis. Neuroophthalmology. 2013;37(1):1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Connor SE, et al. The relationship of transverse sinus stenosis to bony groove dimensions provides an insight into the aetiology of idiopathic intracranial hypertension. Neuroradiology. 2008;50(12):999–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Stevens SA, et al. Idiopathic intracranial hypertension and transverse sinus stenosis: a modelling study. Math Med Biol. 2007;24(1):85–109.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    McGonigal A, Bone I, Teasdale E. Resolution of transverse sinus stenosis in idiopathic intracranial hypertension after L-P shunt. Neurology. 2004;62(3):514–5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Subramaniam S, Fletcher WA. Obesity and weight loss in idiopathic intracranial hypertension: a narrative review. J Neuroophthalmol. 2017;37(2):197–205.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Naarden MT, et al. Idiopathic intracranial hypertension and obesity. Ned Tijdschr Geneeskd. 2015;159:A7980.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Banik R. Obesity and the role of nonsurgical and surgical weight reduction in idiopathic intracranial hypertension. Int Ophthalmol Clin. 2014;54(1):27–41.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Andrews LE, Liu GT, Ko MW. Idiopathic intracranial hypertension and obesity. Horm Res Paediatr. 2014;81(4):217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Schwartz R, et al. The obesity pattern of idiopathic intracranial hypertension in men. Graefes Arch Clin Exp Ophthalmol. 2013;251(11):2643–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Daniels AB, et al. Profiles of obesity, weight gain, and quality of life in idiopathic intracranial hypertension (pseudotumor cerebri). Am J Ophthalmol. 2007;143(4):635–41.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ko MW, et al. Weight gain and recurrence in idiopathic intracranial hypertension: a case-control study. Neurology. 2011;76(18):1564–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sugerman HJ, et al. Increased intra-abdominal pressure and cardiac filling pressures in obesity-associated pseudotumor cerebri. Neurology. 1997;49(2):507–11.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hannerz J, Ericson K. The relationship between idiopathic intracranial hypertension and obesity. Headache. 2009;49(2):178–84.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Whiteley W, et al. CSF opening pressure: reference interval and the effect of body mass index. Neurology. 2006;67(9):1690–1.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bono F, et al. Obesity does not induce abnormal CSF pressure in subjects with normal cerebral MR venography. Neurology. 2002;59(10):1641–3.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002;59(10):1492–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Smith JL. Whence pseudotumor cerebri? J Clin Neuroophthalmol. 1985;5(1):55–6.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Piette JC, Wechsler B, Vidailhet M. Idiopathic intracranial hypertension: don’t forget cerebral venous thrombosis. Am J Med. 1994;97(2):200.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sylaja PN, et al. Differential diagnosis of patients with intracranial sinus venous thrombosis related isolated intracranial hypertension from those with idiopathic intracranial hypertension. J Neurol Sci. 2003;215(1–2):9–12.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lin A, et al. Occurrence of cerebral venous sinus thrombosis in patients with presumed idiopathic intracranial hypertension. Ophthalmology. 2006;113(12):2281–4.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nithyanandam S, Joseph M, Mathew T. Clinical profile of cerebral venous thrombosis and the role of imaging in its diagnosis in patients with presumed idiopathic intracranial hypertension. Indian J Ophthalmol. 2011;59(2):169. author reply 169-70PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hardin JS, et al. Idiopathic intracranial hypertension progressing to venous sinus thrombosis, subarachnoid hemorrhage, and stroke. J Neuroophthalmol. 2017;38(1):60–4.CrossRefGoogle Scholar
  41. 41.
    Saindane AM, et al. Association of MRI findings and visual outcome in idiopathic intracranial hypertension. AJR Am J Roentgenol. 2013;201(2):412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee SH, et al. MRI and ultrasonographic findings in idiopathic intracranial hypertension. Cephalalgia. 2013;33(2):139–40.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Alperin N, et al. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2013;34(1):29–34.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mandelstam S, Moon A. MRI of optic disc edema in childhood idiopathic intracranial hypertension. Pediatr Radiol. 2004;34(4):362.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Manfre L, et al. Idiopathic intracranial hypertension: orbital MRI. Neuroradiology. 1995;37(6):459–61.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kalyvas AV, et al. Efficacy, complications and cost of surgical interventions for idiopathic intracranial hypertension: a systematic review of the literature. Acta Neurochir. 2017;159(1):33–49.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hui FK, Abruzzo T, Ansari SA. Endovascular Interventions for Idiopathic Intracranial Hypertension and Venous Tinnitus: New Horizons. Neuroimaging Clin N Am. 2016;26(2):289–99.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sivasankar R, et al. Imaging and interventions in idiopathic intracranial hypertension: a pictorial essay. Indian J Radiol Imaging. 2015;25(4):439–44.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Piper RJ, et al. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev. 2015;8:CD003434.Google Scholar
  50. 50.
    Spitze A, Malik A, Lee AG. Surgical and endovascular interventions in idiopathic intracranial hypertension. Curr Opin Neurol. 2014;27(1):69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Uretsky S. Surgical interventions for idiopathic intracranial hypertension. Curr Opin Ophthalmol. 2009;20(6):451–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lueck C, McIlwaine G. Interventions for idiopathic intracranial hypertension. Cochrane Database Syst Rev. 2005;3:CD003434.Google Scholar
  53. 53.
    Wong R, et al. Idiopathic intracranial hypertension: the association between weight loss and the requirement for systemic treatment. BMC Ophthalmol. 2007;7:15.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    McIlwaine G, Lueck C. Weight loss in idiopathic intracranial hypertension. Ophthalmology. 1999;106(12):2232–3.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kupersmith MJ, et al. Effects of weight loss on the course of idiopathic intracranial hypertension in women. Neurology. 1998;50(4):1094–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Johnson LN, et al. The role of weight loss and acetazolamide in the treatment of idiopathic intracranial hypertension (pseudotumor cerebri). Ophthalmology. 1998;105(12):2313–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sugerman HJ, et al. Effects of surgically induced weight loss on idiopathic intracranial hypertension in morbid obesity. Neurology. 1995;45(9):1655–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Manfield JH, et al. Bariatric surgery or non-surgical weight loss for idiopathic intracranial hypertension? A systematic review and comparison of meta-analyses. Obes Surg. 2017;27(2):513–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Skau M, et al. Disease activity in idiopathic intracranial hypertension: a 3-month follow-up study. J Neurol. 2011;258(2):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gudzune KA, et al. Efficacy of commercial weight-loss programs: an updated systematic review. Ann Intern Med. 2015;162(7):501–12.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Perez-Sanchez JR, et al. Treatment of idiopathic intracranial hypertension with bariatric surgery. Neurologia. 2016;114(1):34–9.Google Scholar
  62. 62.
    Garb J, et al. Bariatric surgery for the treatment of morbid obesity: a meta-analysis of weight loss outcomes for laparoscopic adjustable gastric banding and laparoscopic gastric bypass. Obes Surg. 2009;19(10):1447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cazzo E, et al. Bariatric surgery as a treatment for pseudotumor cerebri: case study and narrative review of the literature. Sao Paulo Med J. 2017;136(2):182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Fridley J, et al. Bariatric surgery for the treatment of idiopathic intracranial hypertension. J Neurosurg. 2011;114(1):34–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Handley JD, et al. Bariatric surgery as a treatment for idiopathic intracranial hypertension: a systematic review. Surg Obes Relat Dis. 2015;11(6):1396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Masuzawa T, Saito T, Sato F. Cytochemical study on enzyme activity associated with cerebrospinal fluid secretion in the choroid plexus and ventricular ependyma. Brain Res. 1981;222(2):309–22.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Buxton N, Punt J. Choroid plexus papilloma producing symptoms by secretion of cerebrospinal fluid. Pediatr Neurosurg. 1997;27(2):108–11.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Keep RF, et al. Choroid plexus ion transporter expression and cerebrospinal fluid secretion. Acta Neurochir Suppl. 1997;70:279–81.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–92.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Committee, N.I.I.H.S.G.W, et al. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA. 2014;311(16):1641–51.CrossRefGoogle Scholar
  71. 71.
    Agarwal MR, Yoo JH. Optic nerve sheath fenestration for vision preservation in idiopathic intracranial hypertension. Neurosurg Focus. 2007;23(5):E7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Alsuhaibani AH, et al. Effect of optic nerve sheath fenestration on papilledema of the operated and the contralateral nonoperated eyes in idiopathic intracranial hypertension. Ophthalmology. 2011;118(2):412–4.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Obi EE, et al. Optic nerve sheath fenestration for idiopathic intracranial hypertension: a seven year review of visual outcomes in a tertiary centre. Clin Neurol Neurosurg. 2015;137:94–101.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pineles SL, Volpe NJ. Long-term results of optic nerve sheath fenestration for idiopathic intracranial hypertension: earlier intervention favours improved outcomes. Neuroophthalmology. 2013;37(1):12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Starks V, et al. Effect of optic nerve sheath fenestration for idiopathic intracranial hypertension on retinal nerve fiber layer thickness. Orbit. 2016;35(2):87–90.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Fonseca PL, et al. Visual outcomes of surgical intervention for pseudotumour cerebri: optic nerve sheath fenestration versus cerebrospinal fluid diversion. Br J Ophthalmol. 2014;98(10):1360–3.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Spoor TC, McHenry JG. Long-term effectiveness of optic nerve sheath decompression for pseudotumor cerebri. Arch Ophthalmol. 1993;111(5):632–5.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Brodsky MC, Rettele GA. Protracted postsurgical blindness with visual recovery following optic nerve sheath fenestration. Arch Ophthalmol. 1998;116(1):107–9.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Flynn WJ, Westfall CT, Weisman JS. Transient blindness after optic nerve sheath fenestration. Am J Ophthalmol. 1994;117(5):678–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mudumbai RC. Optic nerve sheath fenestration: indications, techniques, mechanisms and, results. Int Ophthalmol Clin. 2014;54(1):43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Russo RR, et al. Progressive visual loss due to obstruction of an optic nerve sheath fenestration demonstrated on SPECT/CT radionuclide cisternography. Clin Nucl Med. 2010;35(3):208–10.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Abubaker K, et al. Idiopathic intracranial hypertension: lumboperitoneal shunts versus ventriculoperitoneal shunts--case series and literature review. Br J Neurosurg. 2011;25(1):94–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Alkherayf F, Abou Al-Shaar H, Awad M. Management of idiopathic intracranial hypertension with a programmable lumboperitoneal shunt: early experience. Clin Neurol Neurosurg. 2015;136:5–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    El-Saadany WF, Farhoud A, Zidan I. Lumboperitoneal shunt for idiopathic intracranial hypertension: patients’ selection and outcome. Neurosurg Rev. 2012;35(2):239–43. discussion 243-4PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hammers R, et al. Laparoscopic-assisted lumboperitoneal shunt placement for idiopathic intracranial hypertension. Semin Ophthalmol. 2008;23(3):151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Higgins JN, et al. Venous sinus stenting for refractory benign intracranial hypertension. Lancet. 2002;359(9302):228–30.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Higgins JN, et al. Idiopathic intracranial hypertension: 12 cases treated by venous sinus stenting. J Neurol Neurosurg Psychiatry. 2003;74(12):1662–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Radvany MG, et al. Visual and neurological outcomes following endovascular stenting for pseudotumor cerebri associated with transverse sinus stenosis. J Neuroophthalmol. 2013;33(2):117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Fields JD, et al. Dural venous sinus angioplasty and stenting for the treatment of idiopathic intracranial hypertension. J Neurointerv Surg. 2013;5(1):62–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Qiu MJ, et al. Dural venous sinus angioplasty and stenting for treatment of Idiopathic intracranial hypertension. Chin Med J. 2017;130(7):879–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
  2. 2.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  3. 3.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations