The Molecular Basis of Retinal Ganglion Cell Death in Glaucoma

  • Zheng Zhang
  • Ningli WangEmail author
Part of the Advances in Visual Science and Eye Diseases book series (AVSED, volume 1)


All biochemical activities accompany with energy exchange [1]. Fabulously, the oxygen consumption per tissue weight in the retina is one of the highest in the human body. Therefore, retinal tissue is heavily dependent on mitochondria for energy supplement. Retinal ganglion cells (RGCs) have been estimated to have more mitochondria than any other neurons in the central nervous system (CNS).


  1. 1.
    Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134):689–95.CrossRefGoogle Scholar
  2. 2.
    Osborne NN. Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res. 2010;90(6):750–7.CrossRefGoogle Scholar
  3. 3.
    Osborne NN, del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr Opin Pharmacol. 2013;13(1):16–22.CrossRefGoogle Scholar
  4. 4.
    Morgan JE. Circulation and axonal transport in the optic nerve. Eye (Lond). 2004;18(11):1089–95.CrossRefGoogle Scholar
  5. 5.
    Kong GY, Van Bergen NJ, Trounce IA, Crowston JG. Mitochondrial dysfunction and glaucoma. J Glaucoma. 2009;18(2):93–100.CrossRefGoogle Scholar
  6. 6.
    Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O’Neill EC, Crowston JG, Trounce IA. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res. 2011;93(2):204–12.Google Scholar
  7. 7.
    Hollander H, Makarov F, Stefani FH, Stone J. Evidence of constriction of optic nerve axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res. 1995;27(5):296–309.CrossRefGoogle Scholar
  8. 8.
    Wang L, Dong J, Cull G, Fortune B, Cioffi GA. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest Ophthalmol Vis Sci. 2003;44(1):2–9.CrossRefGoogle Scholar
  9. 9.
    Baltan S, Inman DM, Danilov CA, Morrison RS, Calkins DJ, Horner PJ. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J Neurosci. 2010;30(16):5644–52.CrossRefGoogle Scholar
  10. 10.
    Ju WK, Kim KY, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I, Ellisman MH, Perkins GA, et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci. 2008;49(11):4903–11.CrossRefGoogle Scholar
  11. 11.
    Band LR, Hall CL, Richardson G, Jensen OE, Siggers JH, Foss AJ. Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma. Invest Ophthalmol Vis Sci. 2009;50(8):3750–8.CrossRefGoogle Scholar
  12. 12.
    Zhang Z, Liu D, Jonas JB, Wu S, Kwong JM, Zhang J, Liu Q, Li L, Lu Q, Yang D, et al. Axonal transport in the rat optic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure. Invest Ophthalmol Vis Sci. 2015;56(8):4257–66.CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Wu S, Jonas JB, Zhang J, Liu K, Lu Q, Wang N. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol. 2015;94(3):266–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Ophthalmology & Visual Sciences Key LaboratoryBeijingChina

Personalised recommendations