Advertisement

Energetic and Exergetic Performance Analysis of a CI Engine Fuelled with Diesel-Blended Plastic Pyrolytic Oil

  • Amar Kumar Das
  • Achyut Kumar Panda
  • Dulari Hansdah
Conference paper

Abstract

In this work, plastic oil derived from the kaoline catalyzed pyrolysis of waste polypropylene plastics are used as alternate fuels along with diesel in CI engine. The performance characteristics of the plastic oil blended with 10, 20, 30, 40, and 50% diesel are analyzed and compared with diesel fuel operation. Experiments have been carried out to analyze the Energy and Exergy characteristics of diesel engine fuelled by plastic oil blended diesel fuel. The energetic and exergetic performance of waste plastic oil blended diesel is found higher than the diesel fuel operation.

Graphical Abstract

The schematic diagram explains the consumption of air-fuel mixture fed to a diesel engine and extraction of useful work from the engine. It also quantifies different losses of energy in different media associated with the engine during power generation.

Keywords

Catalytic pyrolysis Waste plastics Plastic oil Diesel CI engine Energy analysis Exergy analysis 

Nomenclature

ma

Mass flow rate of air inducted into the combustion chamber under normal ambient conditions (kg/s)

\(\dot{m}_{\text{f}}\)

Mass flow rate of fuel mixed with air to maintain a required A/F ratio for ease of combustion (kg/s)

W

Shaft work produced in BHP

\(\dot{n}_{\text{F}}\)

Molar rate of the fuel

hp and hr

The enthalpies of the products and reactants per mole of the fuel respectively

ΔH

Enthalpy change due to a change of state at a constant composition

nout and nin

correspond to the relevant coefficients in the reaction equation

\(H_{f}^{ 0}\)

Enthalpy of formation

LHVfuel

Lower heating value of the fuel (kJ/kg)

\(\dot{E}_{xa}\)

Exergy flow rates of inlet air

\(\dot{E}_{xf}\)

Exergy flow rates of fuel

\(\dot{E}_{xg}\)

Exergy flow rates of gas

\(\dot{E}_{xw}\)

Exergy flow rates of shaft work generated

\(\dot{E}_{xc}\)

Exergy flow rates of heat transfer to coolant and surrounding air

\(\dot{E}_{xdes}\)

Rate of destructed exergy

Cp, a

Specific heat capacity of air

\(P_{a}\)

Pressure of the intake air

\(X_{i}\)

Mass fraction

\(C_{p,g}\)

Specific heat capacity of exhaust gas generated from engine

Tg and Pg

Temperature and pressure of exhaust gas generated from engine

\(\dot{W}\)

The net work rate

ω

Angular velocity

T

Torque

References

  1. 1.
    Hasheminejad M, Tabatabaei M, Mansourpanah Y, Javani A (2016) Effect of an emission reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel 93(2016):353–368Google Scholar
  2. 2.
    Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photo electrochemical cells based on photosynthetic systems: a review. Bio fuel Res 227–235CrossRefGoogle Scholar
  3. 3.
    Panda AK, Singh RK (2010) Catalytic performances of kaolin and silica alumina in the thermal degradation of polypropylene. J Fuel Chem Technol 39(3):198–202CrossRefGoogle Scholar
  4. 4.
    Mojarrab M, Aghbashlo M, Mobli H (2016) Exegetic performance assessment of a long-life milk processing plant: a comprehensive survey. J Clean Prod 140:590–607Google Scholar
  5. 5.
    Rosen MA, Dincer I (2001) Exergy as the confluence of energy, environment and sustainable development. Exergy Int J 1(1):3e13CrossRefGoogle Scholar
  6. 6.
    VanGerpen JH, Shapiro HN (1990) Second-law analysis of diesel engine combustion. J Eng Gas Turb Power 112(1):129–137CrossRefGoogle Scholar
  7. 7.
    Rakopoulos CD, Kyritsis DC (2001) Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels. Energy 26(7):705–722CrossRefGoogle Scholar
  8. 8.
    Rakopoulos CD, Giakoumis EG (2006) Comparative first-and second-law parametric study of transient diesel engine operation. Energy 31(12):1927e1942CrossRefGoogle Scholar
  9. 9.
    Zheng J, Caton JA (2012) Second law analysis of low temperature combustion diesel engine: effect of injection timing and exhaust gas recirculation. Energy 38(1):78–84CrossRefGoogle Scholar
  10. 10.
    Canakci M, Hosoz M (2006) Energy and exergy analyses of a diesel engine fuelled with various biodiesels. Energy Source Part B 1(4):379–394CrossRefGoogle Scholar
  11. 11.
    Caliskan H, Tat ME, Hepbasli A, Van Gerpen JH (2010) Exergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental values. Int J Exergy 7(1):20–36CrossRefGoogle Scholar
  12. 12.
    da Costa YJR, de Lima AGB, Bezerra Filho CR, de Araujo Lima L (2012) Energetic and exergetic analyses of a dual-fuel diesel engine. Renew Sustain Energy Rev 16(7):4651–4660Google Scholar
  13. 13.
    Lopez I, Quintana CE, Ruiz JJ, Cruz-Perag F, Dorado MP (2014) Effect of the use of oliveepomace oil biodiesel/diesel fuel blends in a compression ignition engine: preliminary exergy analysis. Energy Convers Manage 85:227–233CrossRefGoogle Scholar
  14. 14.
    Aghbashlo M, Tabatabaei M, Mohammadi P, Pourvosoughi N, Nikbakht AM, Goli SAH (2015) Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Converse Manage 10(5):328–337CrossRefGoogle Scholar
  15. 15.
    Caliskan H, Tat ME, Hepbasli A, Gerpen JHV (2010) Exergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental values. Int J Exergy 1(7):20–36CrossRefGoogle Scholar
  16. 16.
    Sayin C, Hosoz M, Canakei M, Kilicaslan I (2007) Energy and exergy analysis of a gasoline engine. Int J Energy Res 31(3):259–273CrossRefGoogle Scholar
  17. 17.
    Sekmen P, Yilbasi Z (2011) Application of energy and exergy analyses to a CI engine using biodiesel fuel. Math Comput Appl 6(4):797–808Google Scholar
  18. 18.
    Biplab KD, Sahoo N, Ujjwal KS (2013) Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester. Energy Conserv Manag 65:147–154Google Scholar
  19. 19.
    Panigrahi N, Mohanty MK, Acharya SK, Mishra SR, Mohanty RC (2014) Experimental investigation of karanja oil as a fuel for diesel engine—using shell and tube heat exchanger, World Academy of Science, Engineering and Technology. Int J Chem Mat Sci Eng 8(1):91–98Google Scholar
  20. 20.
    Panigrahi N, Mohanty MK, Mohanty RC, Mishra SR (2016) Performance of a C.I. engine with energy and exergy analysis fuelled with neem oil methyl ester. Int J Renew Energy Technol 7(3):264–287CrossRefGoogle Scholar
  21. 21.
    Moran MJ, Shapiro HN, Boettner DD, Bailey M (2014) Fundamentals of engineering thermodynamics, eighth edn. WileyGoogle Scholar
  22. 22.
    Cengel YA, Boles MA (2009) Thermodynamics: an engineering approach, 6th edn. Tata Mc GRAW Hill Companies, New DelhiGoogle Scholar
  23. 23.
    Canakci M, Hosoz M (2006) Energy and exergy analysis of a diesel engine fuelled with various biodiesels. Energy Sour Part B 1:379–394CrossRefGoogle Scholar
  24. 24.
    Shamshirband S, Tabatabaei M, Aghbashlo M, Yee L, Petkovi D (2016), Support vector machine-based exergetic modelling of a DI diesel engine running on biodiesel blends containing expanded polystyrene. Appl Therm Eng 727–747Google Scholar
  25. 25.
    Lopez I, Quintana CE, Ruiz JJ, Cruz-Perag F, Dorado MP (2014) Effect of the use of oliveepomace oil biodiesel/diesel fuel blends in a compression ignition engine. Preliminary exergy analysis. Energy Convers Manage 227–233CrossRefGoogle Scholar
  26. 26.
    Rakopoulos CD, Giakoumis EG (2006) Second-law analyses applied to internal combustion engines operation. Prog Energy Combust Sci 31(12):2–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Amar Kumar Das
    • 1
  • Achyut Kumar Panda
    • 2
  • Dulari Hansdah
    • 3
  1. 1.Department of Mechanical EngineeringVeer Surendra Sai University of TechnologyBurlaIndia
  2. 2.Department of ChemistryVeer Surendra Sai University of TechnologyBurlaIndia
  3. 3.Department of Mechanical EngineeringNational Institute of Technology JamshedpurJamshedpurIndia

Personalised recommendations