Advertisement

Photocatalysis pp 133-172 | Cite as

Phase Control of TiO2 Photocatalyst

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

TiO2 that exists in different phases such as anatase, rutile, and brookite is one of the most promising photocatalysts. These phases show different properties and photocatalytic performances. It is well known that mixed-phase TiO2 has enhanced photocatalytic activity compared to pure-phase TiO2. In the past two decades, many research works focusing on the synthesis of different kinds of mixed-phase TiO2 and their applications to photocatalysis have been done. In this chapter, we introduce three main types of TiO2 phases as mentioned above, containing their structural properties, stability, phase transformation, and photocatalytic activity. Then we pay more attention to the synthesis of the mixed-phase TiO2 and detailedly introduce six preparation methods, which are hydrothermal method, solvothermal method, microemulsion-mediated solvothermal method, sol–gel method, solvent mixing and calcination method, and high-temperature calcination method. After that, we comprehensively highlight three different kinds of applications of the mixed-phase TiO2 in the photocatalysis field, including photocatalytic production of hydrogen, reduction of CO2 with water, and degradation of organic pollutants. As the photocatalytic activity of the mixed-phase TiO2 is usually higher than the single-phase TiO2, we discuss the mechanism for the enhancing effects of the mixed phases. Due to the limit of the present science and technology, the challenges of mixed-phase TiO2 still remain. In the end, we summarize the existing problems of this kind of nanomaterials and put its application prospects forward.

Keywords

TiO2 Phase control Mixed-phase Synthesis Application Photocatalyst 

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  2. 2.
    Carey JH, Lawrence J, Tosine HM (1976) Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol 16(6):697–701PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408CrossRefGoogle Scholar
  4. 4.
    Hu K, Robson KC, Johansson PG et al (2012) Intramolecular hole transfer at sensitized TiO2 interfaces. J Am Chem Soc 134(20):8352–8355PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guo Q, Xu C, Ren Z et al (2012) Stepwise photocatalytic dissociation of methanol and water on TiO2 (110). J Am Chem Soc 134(32):13366–13373PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tian B, Chen F, Zhang J et al (2006) Influences of acids and salts on the crystalline phase and morphology of TiO2 prepared under ultrasound irradiation. J Colloid Interface Sci 303(1):142–148PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tomkiewicz M, Dagan G, Zhu Z (1994) Morphology and photocatalytic activity of TiO2 aerogels. Res Chem Intermed 20(7):701–710CrossRefGoogle Scholar
  8. 8.
    Zhu S, Xie G, Yang X et al (2013) A thick hierarchical rutile TiO2 nanomaterial with multilayered structure. Mater Res Bull 48(5):1961–1966CrossRefGoogle Scholar
  9. 9.
    Beuvier T, Richard-Plouet M, Mancini-Le Granvalet M et al (2010) TiO2 (B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg Chem 49(18):8457–8464PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Xin X, Scheiner M, Ye M et al (2011) Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. Langmuir 27(23):14594–14598PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hosono E, Fujihara S, Imai H et al (2007) One-step synthesis of nano–micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano 1(4):273–278PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sinha AK, Jana S, Pande S et al (2009) New hydrothermal process for hierarchical TiO2 nanostructures. Cryst Eng Comm 11(7):1210–1212CrossRefGoogle Scholar
  13. 13.
    Cheng QQ, Cao Y, Yang L et al (2011) Synthesis and photocatalytic activity of titania microspheres with hierarchical structures. Mater Res Bull 46(3):372–377CrossRefGoogle Scholar
  14. 14.
    Wang Y, Zhang L, Deng K et al (2007) Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J Phys Chem C 111(6):2709–2714CrossRefGoogle Scholar
  15. 15.
    Wei J, Yao J, Zhang X et al (2007) Hydrothermal growth of titania nanostructures with tunable phase and shape. Mater Lett 61(23):4610–4613CrossRefGoogle Scholar
  16. 16.
    Hu YH (2012) A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angew Chem Int Ed 51(50):12410–12412CrossRefGoogle Scholar
  17. 17.
    Oh JK, Lee JK, Kim HS et al (2010) TiO2 branched nanostructure electrodes synthesized by seeding method for dye-sensitized solar cells. Chem Mater 22(3):1114–1118CrossRefGoogle Scholar
  18. 18.
    Ye M, Liu HY, Lin C et al (2013) Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9(2):312–321PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Si P, Ding S, Yuan J et al (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5(9):7617–7626PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Etgar L, Gao P, Xue Z et al (2012) Mesoscopic CH3 NH3 PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Guo W, Xu C, Wang X et al (2012) Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J Am Chem Soc 134(9):4437–4441PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wang YQ, Gu L, Guo YG et al (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134(18):7874–7879PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    So S, Lee K, Schmuki P (2012) Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes. J Am Chem Soc 134(28):11316–11318PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wang WN, An WJ, Ramalingam B et al (2012) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134(27):11276–11281PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Leghari SAK, Sajjad S, Chen F et al (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J 166(3):906–915CrossRefGoogle Scholar
  26. 26.
    Chen F, Zou W, Qu W et al (2009) Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun 10(11):1510–1513CrossRefGoogle Scholar
  27. 27.
    Xing M, Zhang J, Chen F (2009) New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl Catal B Environ 89(3):563–569CrossRefGoogle Scholar
  28. 28.
    Kim TH, Gómez-Solís C, Moctezuma E et al (2014) Sonochemical synthesis of Fe–TiO2–SiC composite for degradation of rhodamine B under solar simulator. Res Chem Intermed 40(4):1595–1605CrossRefGoogle Scholar
  29. 29.
    Zuo F, Wang L, Wu T et al (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kim YJ, Lee MH, Kim HJ et al (2009) Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21(36):3668–3673CrossRefGoogle Scholar
  31. 31.
    Liu S, Li Q, Hou C et al (2013) Hierarchical nitrogen and cobalt co-doped TiO2 prepared by an interface-controlled self-aggregation process. J Alloys Compd 575:128–136CrossRefGoogle Scholar
  32. 32.
    Cai M, Pan X, Liu W et al (2013) Multiple adsorption of tributyl phosphate molecule at the dyed-TiO2/electrolyte interface to suppress the charge recombination in dye-sensitized solar cell. J Mater Chem A 1(15):4885–4892CrossRefGoogle Scholar
  33. 33.
    Liang MS, Khaw CC, Liu CC et al (2013) Synthesis and characterisation of thin-film TiO2 dye-sensitised solar cell. Ceram Int 39(2):1519–1523CrossRefGoogle Scholar
  34. 34.
    Kim H, Hwang YH, Cho G et al (2011) Partially dyed-TiO2 dispersions for adaptation to the continuous fabrication of photoanodes. Electrochim Acta 56(25):9476–9481CrossRefGoogle Scholar
  35. 35.
    Zhang C, Huang Y, Chen S et al (2012) Photoelectrochemical analysis of the dyed TiO2/electrolyte interface in long-term stability of dye-sensitized solar cells. J Phys Chem C 116(37):19807–19813CrossRefGoogle Scholar
  36. 36.
    Bae EG, Kim H, Hwang YH et al (2012) Genetic algorithm-assisted optimization of partially dyed-TiO2 for room-temperature printable photoanodes of dye-sensitized solar cells. J Mater Chem 22(2):551–556CrossRefGoogle Scholar
  37. 37.
    Ashkarran AA, Ghavamipour M, Hamidinezhad H et al (2015) Enhanced visible light-induced hydrophilicity in sol–gel-derived Ag–TiO2 hybrid nanolayers. Res Chem Intermed 41(10):7299–7311CrossRefGoogle Scholar
  38. 38.
    Haruta M, Uphade BS, Tsubota S et al (1998) Selective oxidation of propylene over gold deposited on titanium-based oxides. Res Chem Intermed 24(3):329–336CrossRefGoogle Scholar
  39. 39.
    Tian B, Zhang J, Tong T et al (2008) Preparation of Au/TiO2 catalysts from Au (I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl Catal B Environ 79(4):394–401CrossRefGoogle Scholar
  40. 40.
    Wu Y, Liu H, Zhang J et al (2009) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113(33):14689–14695CrossRefGoogle Scholar
  41. 41.
    Wang W, Zhang J, Chen F et al (2010) Catalysis of redox reactions by Ag@TiO2 and Fe3+-doped Ag@TiO2 core–shell type nanoparticles. Res Chem Intermed 36(2):163–172CrossRefGoogle Scholar
  42. 42.
    Wang Y, Feng C, Zhang M et al (2010) Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl Catal B Environ 100(1):84–90CrossRefGoogle Scholar
  43. 43.
    Feng C, Wang Y, Zhang J et al (2012) The effect of infrared light on visible light photocatalytic activity: an intensive contrast between Pt-doped TiO2 and N-doped TiO2. Appl Catal B Environ 113:61–71CrossRefGoogle Scholar
  44. 44.
    Charanpahari A, Umare SS, Gokhale SP et al (2012) Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange. Appl Catal A Gen 443:96–102CrossRefGoogle Scholar
  45. 45.
    Tian B, Li C, Gu F et al (2009) Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2. Catal Commun 10(6):925–929CrossRefGoogle Scholar
  46. 46.
    Zhang P, Shao C, Li X et al (2012) In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-way synergistic heterostructure with enhanced photocatalytic activity. J Hazard Mater 237:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang Z, Yuan Y, Liang L et al (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158(2):517–522PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chattopadhyaya G, Macdonald DG, Bakhshi NN et al (2006) Removal of nitric oxide over Saskatchewan lignite and its derivatives. Catal Lett 108(1):1–5CrossRefGoogle Scholar
  49. 49.
    Yang M, Men Y, Li S et al (2012) Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO–Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming. Appl Catal A Gen 433:26–34CrossRefGoogle Scholar
  50. 50.
    Su R, Bechstein R, Sø L et al (2011) How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J Phys Chem C 115(49):24287–24292CrossRefGoogle Scholar
  51. 51.
    Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549CrossRefGoogle Scholar
  52. 52.
    Scotti R, Bellobono IR, Canevali C et al (2008) Sol−gel pure and mixed-phase titanium dioxide for photocatalytic purposes: relations between phase composition, catalytic activity, and charge-trapped sites. Chem Mater 20(12):4051–4061CrossRefGoogle Scholar
  53. 53.
    Puddu V, Choi H, Dionysiou DD et al (2010) TiO2 photocatalyst for indoor air remediation: influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl Catal B Environ 94(3):211–218CrossRefGoogle Scholar
  54. 54.
    Zheng R, Meng X, Tang F (2009) Synthesis, characterization and photodegradation study of mixed-phase titania hollow submicrospheres with rough surface. Appl Surf Sci 255(11):5989–5994CrossRefGoogle Scholar
  55. 55.
    Jiao Y, Chen F, Zhao B et al (2012) Anatase grain loaded brookite nanoflower hybrid with superior photocatalytic activity for organic degradation. Colloids Surf A Physicochem Eng Asp 402:66–71CrossRefGoogle Scholar
  56. 56.
    Di Paola A, Cufalo G, Addamo M et al (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A Physicochem Eng Asp 317(1):366–376CrossRefGoogle Scholar
  57. 57.
    Li W, Liu C, Zhou Y et al (2008) Enhanced photocatalytic activity in anatase/TiO2 (B) core−shell nanofiber. J Phys Chem C 112(51):20539–20545CrossRefGoogle Scholar
  58. 58.
    Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874CrossRefGoogle Scholar
  59. 59.
    Gamboa JA, Pasquevich DM (1992) Effect of chlorine atmosphere on the anatase-rutile transformation. J Am Ceram Soc 75(11):2934–2938CrossRefGoogle Scholar
  60. 60.
    Ding XZ, He YZ (1996) Study of the room temperature ageing effect on structural evolution of gel-derived nanocrystalline titania powders. J Mater Sci Lett 15(4):320–322CrossRefGoogle Scholar
  61. 61.
    Muscat J, Swamy V, Harrison NM (2002) First-principles calculations of the phase stability of TiO2. Phys Rev B 65(22):224–112CrossRefGoogle Scholar
  62. 62.
    Arlt T, Bermejo M, Blanco MA et al (2000) High-pressure polymorphs of anatase TiO2. Phys Rev B 61(21):14414–14419CrossRefGoogle Scholar
  63. 63.
    Ren R, Yang Z, Shaw LL (2000) Polymorphic transformation and powder characteristics of TiO2 during high energy milling. J Mater Sci 35(23):6015–6026CrossRefGoogle Scholar
  64. 64.
    Dubrovinskaia NA, Dubrovinsky LS, Ahuja R et al (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87(27):455–475CrossRefGoogle Scholar
  65. 65.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229CrossRefGoogle Scholar
  66. 66.
    Yan M, Chen F, Zhang J et al (2005) Preparation of controllable crystalline titania and study on the photocatalytic properties. J Phys Chem B 109(18):8673–8678PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li Y, White TJ, Lim SH (2004) Low-temperature synthesis and microstructural control of titania nano-particles. J Solid State Chem 177(4):1372–1381CrossRefGoogle Scholar
  68. 68.
    Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328(1):8–26CrossRefGoogle Scholar
  69. 69.
    Daneshvar N, Rasoulifard MH, Khataee AR et al (2007) Removal of CI acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater 143(1):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Moret MP, Zallen R, Vijay DP et al (2000) Brookite-rich titania films made by pulsed laser deposition. Thin Solid Films 366(1):8–10CrossRefGoogle Scholar
  71. 71.
    Shannon RD, Pask JA (1965) Kinetics of the anatase-rutile transformation. J Am Ceram Soc 48(8):391–398CrossRefGoogle Scholar
  72. 72.
    Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96(2):026–103CrossRefGoogle Scholar
  73. 73.
    Oskam G, Nellore A, Penn RL et al (2003) The growth kinetics of TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio. J Phys Chem B 107(8):1734–1738CrossRefGoogle Scholar
  74. 74.
    Banfield J (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8(9):2073–2076CrossRefGoogle Scholar
  75. 75.
    Li JG, Ishigaki T, Sun X (2007) Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J Phys Chem C 111(13):4969–4976CrossRefGoogle Scholar
  76. 76.
    Bickley RI, Gonzalez-Carreno T, Lees JS et al (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92(1):178–190CrossRefGoogle Scholar
  77. 77.
    Lee SK, Robertson PK, Mills A et al (1999) Modification and enhanced photocatalytic activity of TiO2 following exposure to non-linear irradiation sources. J Photochem Photobiol A Chem 122(1):69–71CrossRefGoogle Scholar
  78. 78.
    Tsai SJ, Cheng S (1997) Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal Today 33(1–3):227–237CrossRefGoogle Scholar
  79. 79.
    Ohno T, Sarukawa K, Matsumura M (2001) Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J Phys Chem B 105(12):2417–2420CrossRefGoogle Scholar
  80. 80.
    Ozawa T, Iwasaki M, Tada H et al (2005) Low-temperature synthesis of anatase–brookite composite nanocrystals: the junction effect on photocatalytic activity. J Colloid Interface Sci 281(2):510–513PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Xu H, Zhang L (2009) Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J Phys Chem C 113(5):1785–1790CrossRefGoogle Scholar
  82. 82.
    Bacsa RR, Kiwi J (1998) Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl Catal B Environ 16(1):19–29CrossRefGoogle Scholar
  83. 83.
    Jung KY, Park SB, Jang HD (2004) Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4. Catal Commun 5(9):491–497CrossRefGoogle Scholar
  84. 84.
    Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216(1):35–43CrossRefGoogle Scholar
  85. 85.
    Wu Y, Xing M, Zhang J (2011) Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J Hazard Mater 192(1):368–373PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ng J, Wang X, Sun DD (2011) One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Appl Catal B Environ 110:260–272CrossRefGoogle Scholar
  87. 87.
    Ovenstone J, Yanagisawa K (1999) Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem Mater 11(10):2770–2774CrossRefGoogle Scholar
  88. 88.
    Li G, Ciston S, Saponjic ZV et al (2008) Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J Catal 253(1):105–110CrossRefGoogle Scholar
  89. 89.
    Fehse M, Fischer F, Tessier C et al (2013) Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries. J Power Sources 231:23–28CrossRefGoogle Scholar
  90. 90.
    Zhang Y, Chen J, Li X (2010) Preparation and photocatalytic performance of anatase/rutile mixed-phase TiO2 nanotubes. Catal Lett 139(3–4):129–133CrossRefGoogle Scholar
  91. 91.
    Tay Q, Liu X, Tang Y et al (2013) Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J Phys Chem C 117(29):14973–14982CrossRefGoogle Scholar
  92. 92.
    Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104(15):3481–3487CrossRefGoogle Scholar
  93. 93.
    Shen X, Tian B, Zhang J (2013) Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catal Today 201:151–158CrossRefGoogle Scholar
  94. 94.
    Zhao B, Chen F, Huang Q et al (2009) Brookite TiO2 nanoflowers. Chem Commun 34:5115–5117CrossRefGoogle Scholar
  95. 95.
    Zhao LM, Zhang ZJ, Zhang SY et al (2011) Metal–organic frameworks based on transition-metal carboxylate clusters as secondary building units: synthesis, structures and properties. CrystEngComm 13(3):907–913CrossRefGoogle Scholar
  96. 96.
    Zhao B, Chen F, Jiao Y et al (2010) Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. J Mater Chem 20(37):7990–7997CrossRefGoogle Scholar
  97. 97.
    Shen X, Zhang J, Tian B (2012) Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J Mater Sci 47(15):5743–5751CrossRefGoogle Scholar
  98. 98.
    Cheng H, Ma J, Zhao Z et al (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7(4):663–671CrossRefGoogle Scholar
  99. 99.
    Li G, Gray KA (2007) Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem Mater 19(5):1143–1146CrossRefGoogle Scholar
  100. 100.
    Lei SHI, Duan WENG (2008) Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J Environ Sci 20(10):1263–1267CrossRefGoogle Scholar
  101. 101.
    Wu M, Long J, Huang A et al (1999) Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir 15(26):8822–8825CrossRefGoogle Scholar
  102. 102.
    Shen X, Zhang J, Tian B (2011) Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile. J Hazard Mater 192(2):651–657PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zachariah A, Priya R, Baiju KV, Shukla S et al (2008) Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J Phys Chem C 112:11345–11356CrossRefGoogle Scholar
  104. 104.
    Bojinova A, Kralchevska R, Poulios I et al (2007) Anatase/rutile TiO2 composites: influence of the mixing ratio on the photocatalytic degradation of malachite green and orange II in slurry. Mater Chem Phys 106(2):187–192CrossRefGoogle Scholar
  105. 105.
    Liu Z, Zhang X, Nishimoto S et al (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23(22):10916–10919PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Nair RG, Paul S, Samdarshi SK (2011) High UV/visible light activity of mixed phase titania: a generic mechanism. Sol Energy Mater Sol Cells 95(7):1901–1907CrossRefGoogle Scholar
  107. 107.
    Gouma PI, Mills MJ (2001) Anatase-to-rutile transformation in titania powders. J Am Ceram Soc 84(3):619–622CrossRefGoogle Scholar
  108. 108.
    Zhang J, Li M, Feng Z et al (2006) UV Raman spectroscopic study on TiO2 I. Phase transformation at the surface and in the bulk. J Phys Chem B 110(2):927–935PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Hsu YC, Lin HC, Chen CH et al (2010) Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications. J Solid State Chem 183(9):1917–1924CrossRefGoogle Scholar
  110. 110.
    Ni M, Leung MK, Leung DY et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425CrossRefGoogle Scholar
  111. 111.
    Lei J, Li H, Zhang J et al (2016) Mixed-phase TiO2 nanomaterials as efficient photocatalysts. In: Low-dimensional and nanostructured materials and devices. Springer International Publishing, Cham, pp 423–460CrossRefGoogle Scholar
  112. 112.
    Xu Q, Ma Y, Zhang J et al (2011) Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. J Catal 278(2):329–335CrossRefGoogle Scholar
  113. 113.
    Kho YK, Iwase A, Teoh WY et al (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114(6):2821–2829CrossRefGoogle Scholar
  114. 114.
    Xu F, Xiao W, Cheng B et al (2014) Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int J Hydrog Energy 39(28):15394–15402CrossRefGoogle Scholar
  115. 115.
    Rosseler O, Shankar MV, Karkmaz-Le Du M et al (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: influence of noble metal and porogen promotion. J Catal 269(1):179–190CrossRefGoogle Scholar
  116. 116.
    Marcı G, Addamo M, Augugliaro V et al (2003) Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J Photochem Photobiol A Chem 160(1):105–114CrossRefGoogle Scholar
  117. 117.
    Liu L, Zhao H, Andino JM et al (2012) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2(8):1817–1828CrossRefGoogle Scholar
  118. 118.
    Zhao H, Liu L, Andino JM et al (2013) Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels. J Mater Chem A 1(28):8209–8216CrossRefGoogle Scholar
  119. 119.
    Frank NS, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc 99(1):303–304CrossRefGoogle Scholar
  120. 120.
    Xu H, Li G, Zhu G et al (2015) Enhanced photocatalytic degradation of rutile/anatase TiO2 heterojunction nanoflowers. Catal Commun 62:52–56CrossRefGoogle Scholar
  121. 121.
    Luo Z, Poyraz AS, Kuo CH et al (2015) Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem Mater 27(1):6–17CrossRefGoogle Scholar
  122. 122.
    Zhao B, Chen F, Jiao Y et al (2011) Ag 0-loaded brookite/anatase composite with enhanced photocatalytic performance towards the degradation of methyl orange. J Mol Catal A Chem 348(1):114–119CrossRefGoogle Scholar
  123. 123.
    Liao Y, Que W, Jia Q et al (2012) Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J Mater Chem 22(16):7937–7944CrossRefGoogle Scholar
  124. 124.
    Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46(17):5453–5471PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104(19):4815–4820CrossRefGoogle Scholar
  126. 126.
    Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409CrossRefGoogle Scholar
  127. 127.
    Deák P, Aradi B, Frauenheim T (2011) Band lineup and charge carrier separation in mixed rutile-anatase systems. J Phys Chem C 115(8):3443–3446CrossRefGoogle Scholar
  128. 128.
    Scanlon DO, Dunnill CW, Buckeridge J et al (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12(9):798–801PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Datye AK, Riegel G, Bolton JR et al (1995) Microstructural characterization of a fumed titanium dioxide photocatalyst. J Solid State Chem 115(1):236–239CrossRefGoogle Scholar
  130. 130.
    Zhang Z, Wang CC, Zakaria R et al (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102(52):10871–10878CrossRefGoogle Scholar
  131. 131.
    Ohno T, Sarukawa K, Tokieda K et al (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86CrossRefGoogle Scholar
  132. 132.
    Kawahara T, Konishi Y, Tada H et al (2002) A patterned TiO2 (anatase)/TiO2 (rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem 114(15):2935–2937CrossRefGoogle Scholar
  133. 133.
    Li G, Gray KA (2007) The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem Phys 339(1):173–187CrossRefGoogle Scholar
  134. 134.
    Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19(8):3151–3156CrossRefGoogle Scholar
  135. 135.
    Sun B, Smirniotis PG (2003) Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catal Today 88(1):49–59CrossRefGoogle Scholar
  136. 136.
    Liu B, Peng L (2013) Facile formation of mixed phase porous TiO2 nanotubes and enhanced visible-light photocatalytic activity. J Alloys Compd 571:145–152CrossRefGoogle Scholar
  137. 137.
    Li G, Chen L, Graham ME et al (2007) A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid–solid interface. J Mol Catal A Chem 275(1):30–35CrossRefGoogle Scholar
  138. 138.
    Wang CY, Pagel R, Dohrmann JK et al (2006) Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. C R Chim 9(5):761–773CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations