Advertisement

Preparation of Reduced TiO2–x for Photocatalysis

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

The development of TiO2–x photocatalysts will be discussed in this chapter. TiO2–x can be obtained by the incorporation of H atoms or the removal of oxygen atoms on the surface and/or in the bulk of TiO2 photocatalysts. It has been proved to be an efficient environmental and energy conversion–storage material, which can be used in photodegradation of organic compounds, photocatalytic hydrogen generation from water splitting, photoreduction of CO2, lithium-ion batteries, oxygen reduction reaction, and dye-sensitized solar cells. Firstly, the preparation methods of TiO2–x are carefully discussed and scientifically classified into two main categories, where the reactions take place under reducing or oxidizing atmosphere. In order to further improve the activities of TiO2–x catalysts, modification approaches are then introduced, such as doping with nonmetal elements, grafting with metals, compositing with other materials, designing of ordered morphology, special facet exposure, etc. Finally, the current challenges and limits of TiO2–x are also proposed, and new catalyst systems are encouraged for practical applications in the near future.

Keywords

Reduced TiO2 TiO2–x Photocatalyst Ti3 + Oxygen vacancy H incorporation 

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38Google Scholar
  2. 2.
    Komaguchi K, Nakano H, Araki A, Harima Y (2006) Photoinduced electron transfer from anatase to rutile in partially reduced TiO2 (P-25) nanoparticles: an ESR study. Chem Phys Lett 428(4–6):338–342CrossRefGoogle Scholar
  3. 3.
    Diebold U, Anderson JF, Ng KO, Vanderbilt D (1996) Evidence for the tunneling site on transition-metal oxides: TiO2(110). Phys Rev Lett 77(7):1322–1325PubMedCrossRefGoogle Scholar
  4. 4.
    Cronemeyer DC (1959) Infrared absorption of reduced rutile TiO2 single crystals. Phys Rev 113(5):1222–1226CrossRefGoogle Scholar
  5. 5.
    Epling WS, Peden CHF, Henderson MA, Diebold U (1998) Evidence for oxygen adatoms on TiO2 (110) resulting from O2 dissociation at vacancy sites. Surf Sci 412-413(0):333–343CrossRefGoogle Scholar
  6. 6.
    Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113(48):20543–20552CrossRefGoogle Scholar
  7. 7.
    Jiang Z, Zhang W, Jin L, Yang X, Xu F, Zhu J, Huang W (2007) Direct XPS evidence for charge transfer from a reduced rutile TiO2(110) surface to Au clusters. J Phys Chem C 111(33):12434–12439CrossRefGoogle Scholar
  8. 8.
    Deskins NA, Rousseau R, Dupuis M (2011) Distribution of Ti3+ surface sites in reduced TiO2. J Phys Chem C 115(15):7562–7572CrossRefGoogle Scholar
  9. 9.
    Petrik NG, Zhang Z, Du Y, Dohnálek Z, Lyubinetsky I, Kimmel GA (2009) Chemical reactivity of reduced TiO2(110): the dominant role of surface defects in oxygen chemisorption. J Phys Chem C 113(28):12407–12411CrossRefGoogle Scholar
  10. 10.
    Diebold U, Lehman J, Mahmoud T, Kuhn M, Leonardelli G, Hebenstreit W, Schmid M, Varga P (1998) Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf Sci 411(1–2):137–153CrossRefGoogle Scholar
  11. 11.
    Fang W, Xing M, Zhang J (2017) Modifications on reduced titanium dioxide photocatalysts: a review. J Photochem Photobiol C 32:21–39CrossRefGoogle Scholar
  12. 12.
    Chen X, Liu L, Yu P, Mao S (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang J, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cai J, Wang Y, Zhu Y, Wu M, Zhang H, Li X, Jiang Z, Meng M (2015) In situ formation of disorder-engineered TiO2(B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl Mater Inter 7(45):24987–24992CrossRefGoogle Scholar
  15. 15.
    Hu W, Zhou W, Zhang K, Zhang X, Wang L, Jiang B, Tian G, Zhao D, Fu H (2016) Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J Mater Chem A 4(19):7495–7502CrossRefGoogle Scholar
  16. 16.
    Lu H, Zhao B, Pan R, Yao J, Qiu J, Luo L, Liu Y (2014) Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv 4(3):1128–1132CrossRefGoogle Scholar
  17. 17.
    Xing M, Fang W, Nasir M, Ma Y, Zhang J, Anpo M (2013) Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J Catal 297(0):236–243CrossRefGoogle Scholar
  18. 18.
    Ren R, Wen Z, Cui S, Hou Y, Guo X, Chen J (2015) Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci Rep 5:10714PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fang W, Xing M, Zhang J (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl Catal B 160(0):240–246CrossRefGoogle Scholar
  20. 20.
    Zhao Z, Zhang X, Zhang G, Liu Z, Qu D, Miao X, Feng P, Sun Z (2015) Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res 8(12):4061–4071CrossRefGoogle Scholar
  21. 21.
    Tan H, Zhao Z, Niu M, Mao C, Cao D, Cheng D, Feng P, Sun Z (2014) A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6(17):10216–10223PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhang H, Xing Z, Zhang Y, Li Z, Wu X, Liu C, Zhu Q, Zhou W (2015) Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv 5(129):107150–107157CrossRefGoogle Scholar
  23. 23.
    Liu X, Xing Z, Zhang H, Wang W, Zhang Y, Li Z, Wu X, Yu X, Zhou W (2016) Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. ChemSusChem 9(10):1118–1124PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ma C, Pang G, He G, Li Y, He C, Hao Z (2016) Layered sphere-shaped TiO2 capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation. J Environ Sci 39:77–85CrossRefGoogle Scholar
  25. 25.
    Mao C, Zuo F, Hou Y, Bu X, Feng P (2014) In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew Chem 126(39):10653–10657CrossRefGoogle Scholar
  26. 26.
    Cheng X, Cheng Q, Li B, Deng X, Li J, Wang P, Zhang B, Liu H, Wang X (2015) One-step construction of N/Ti3+ codoped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance. Electrochim Acta 186:442–448CrossRefGoogle Scholar
  27. 27.
    Su J, Zou X, Zou Y, Li G, Wang P, Chen J (2013) Porous titania with heavily self-doped Ti3+ for specific sensing of CO at room temperature. Inorg Chem 52(10):5924–5930PubMedCrossRefGoogle Scholar
  28. 28.
    Xing M, Zhang J, Chen F, Tian B (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47(17):4947–4949CrossRefGoogle Scholar
  29. 29.
    Lu G, Linsebigler A, Yates JT (1994) Ti3+ defect sites on TiO2(110): production and chemical detection of active sites. J Phys Chem 98(45):11733–11738CrossRefGoogle Scholar
  30. 30.
    Fang W, Zhou Y, Dong C, Xing M, Zhang J (2016) Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal Today 266:188–196CrossRefGoogle Scholar
  31. 31.
    Zhou Y, Liu Y, Liu P, Zhang W, Xing M, Zhang J (2015) A facile approach to further improve the substitution of nitrogen into reduced TiO2-x with an enhanced photocatalytic activity. Appl Catal B 170(0):66–73CrossRefGoogle Scholar
  32. 32.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ Sci 6(10):3007–3014CrossRefGoogle Scholar
  33. 33.
    Yang C, Wang Z, Lin T, Yin H, Lü X, Wan D, Xu T, Zheng C, Lin J, Huang F, Xie X, Jiang M (2013) Core-shell nanostructured “Black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J Am Chem Soc 135(47):17831–17838PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616CrossRefGoogle Scholar
  35. 35.
    Zheng J, Ji G, Zhang P, Cao X, Wang B, Yu L, Xu Z (2015) Facile aluminum reduction synthesis of blue TiO2 with oxygen deficiency for lithium-ion batteries. Chemistry 21(50):18309–18315PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zheng Z, Huang B, Meng X, Wang J, Wang S, Lou Z, Wang Z, Qin X, Zhang X, Dai Y (2013) Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem Commun 49(9):868–870CrossRefGoogle Scholar
  37. 37.
    Pei D, Gong L, Zhang A, Zhang X, Chen J, Mu Y, Yu H (2015) Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat Commun 6:8696PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fu R, Gao S, Xu H, Wang Q, Wang Z, Huang B, Dai Y (2014) Fabrication of Ti3+ self-doped TiO2(A) nanoparticle/TiO2(R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties. RSC Adv 4(70):37061–37069CrossRefGoogle Scholar
  39. 39.
    Zhao Z, Tan H, Zhao H, Lv Y, Zhou LJ, Song Y, Sun Z (2014) Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem Commun 50(21):2755–2757CrossRefGoogle Scholar
  40. 40.
    Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25(43):6793–6801CrossRefGoogle Scholar
  41. 41.
    Sinhamahapatra A, Jeon JP, Yu JS (2015) A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ Sci 8(12):3539–3544CrossRefGoogle Scholar
  42. 42.
    Kitamura T, Shibata K, Takeda K (1993) In-flight reduction of Fe2O3, Cr2O3, TiO2 and Al2O3 by Ar-H2 and Ar-CH4 plasma. ISIJ Int 33(11):1150–1158CrossRefGoogle Scholar
  43. 43.
    Bullard D, Lynch D (1997) Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall Mater Trans B Process Metall Mater Process Sci 28(6):1069–1080CrossRefGoogle Scholar
  44. 44.
    Palmer RA, Doan TM, Lloyd PG, Jarvis BL, Ahmed NU (2002) Reduction of TiO2 with hydrogen plasma. Plasma Chem Plasma Process 22(3):335–350CrossRefGoogle Scholar
  45. 45.
    Lepcha A, Maccato C, Mettenbörger A, Andreu T, Mayrhofer L, Walter M, Olthof S, Ruoko TP, Klein A, Moseler M, Meerholz K, Morante JR, Barreca D, Mathur S (2015) Electrospun black titania nanofibers: influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance. J Phys Chem C 119(33):18835–18842CrossRefGoogle Scholar
  46. 46.
    An HR, Park SY, Kim H, Lee CY, Choi S, Lee SC, Seo S, Park EC, Oh YK, Song CG, Won J, Kim YJ, Lee J, Lee HU, Lee YC (2016) Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application. Sci Rep 6:29683PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450CrossRefGoogle Scholar
  48. 48.
    Tian Z, Cui H, Zhu G, Zhao W, Xu J, Shao F, He J, Huang F (2016) Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. J Power Sources 325:697–705CrossRefGoogle Scholar
  49. 49.
    Kim HJ, Kim J, Hong B (2013) Effect of hydrogen plasma treatment on nano-structured TiO2 films for the enhanced performance of dye-sensitized solar cell. Appl Surf Sci 274:171–175CrossRefGoogle Scholar
  50. 50.
    Siuzdak K, Szkoda M, Lisowska-Oleksiak A, Karczewski J, Ryl J (2016) Highly stable organic–inorganic junction composed of hydrogenated titania nanotubes infiltrated by a conducting polymer. RSC Adv 6(39):33101–33110CrossRefGoogle Scholar
  51. 51.
    Panomsuwan G, Watthanaphanit A, Ishizaki T, Saito N (2015) Water-plasma-assisted synthesis of black titania spheres with efficient visible-light photocatalytic activity. Phys Chem Chem Phys 17(21):13794–13799PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhu W, Wang C, Chen J, Li Y, Wang J (2014) Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process. Appl Surf Sci 301:525–529CrossRefGoogle Scholar
  53. 53.
    Zhang Z, Hedhili MN, Zhu H, Wang P (2013) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15(37):15637–15644PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang Z, Tan X, Yu T, Jia L, Huang X (2016) Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int J Hydrog Energy 41(27):11634–11643CrossRefGoogle Scholar
  55. 55.
    Swaminathan J, Subbiah R, Singaram V (2016) Defect-rich metallic titania (TiO1.23)–an efficient hydrogen evolution catalyst for electrochemical water splitting. ACS Catal 6(4):2222–2229CrossRefGoogle Scholar
  56. 56.
    Mo LB, Wang Y, Bai Y, Xiang Q, Li Q, Yao W, Wang J, Ibrahim K, Wang H, Wan C, Cao J (2015) Hydrogen impurity defects in rutile TiO2. Sci Rep 5:17634PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liu N, Schneider C, Freitag D, Zolnhofer EM, Meyer K, Schmuki P (2016) Noble-metal-free photocatalytic H2 generation: active and inactive ‘black’ TiO2 nanotubes and synergistic effects. Chemistry 22(39):13810–13814PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen W, He KF, Wang Y, Chan HLW, Yan Z (2013) Highly mobile and reactive state of hydrogen in metal oxide semiconductors at room temperature. Sci Rep 3:3149PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388(6641):431–432CrossRefGoogle Scholar
  60. 60.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10(2):135–138CrossRefGoogle Scholar
  61. 61.
    Mezhenny S, Maksymovych P, Thompson TL, Diwald O, Stahl D, Walck SD, Yates JT Jr (2003) STM studies of defect production on the TiO2(110)-(1×1) and TiO2(110)-(1×2) surfaces induced by UV irradiation. Chem Phys Lett 369(1–2):152–158CrossRefGoogle Scholar
  62. 62.
    Shultz AN, Jang W, Hetherington WM, Baer DR, Wang L, Engelhard MH (1995) Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces. Surf Sci 339(1–2):114–124CrossRefGoogle Scholar
  63. 63.
    Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir 17(17):5368–5374CrossRefGoogle Scholar
  64. 64.
    Li L, Chen Y, Jiao S, Fang Z, Liu X, Xu Y, Pang G, Feng S (2016) Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles. Mater Design 100:235–240CrossRefGoogle Scholar
  65. 65.
    Wu Q, Huang F, Zhao M, Xu J, Zhou J, Wang Y (2016) Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 24:63–71CrossRefGoogle Scholar
  66. 66.
    Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed 51(25):6223–6226CrossRefGoogle Scholar
  67. 67.
    Liu Y, Quan B, Ji G, Zhang H (2016) One-step synthesis of Ti3+ doped TiO2 single anatase crystals with enhanced photocatalytic activity towards degradation of methylene blue. Mater Lett 162:138–141CrossRefGoogle Scholar
  68. 68.
    Cai J, Za H, Lv K, Sun J, Deng K (2014) Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity. RSC Adv 4(38):19588–19593CrossRefGoogle Scholar
  69. 69.
    Yang H, Sun C, Qiao S, Zou J, Liu G, Smith SC, Cheng H, Lu G (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638–641PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Liu X, Gao S, Xu H, Lou Z, Wang W, Huang B, Dai Y (2013) Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5(5):1870–1875PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Liu X, Xu H, Grabstanowicz LR, Gao S, Lou Z, Wang W, Huang B, Dai Y, Xu T (2014) Ti3+ self-doped TiO2-x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal Today 225(0):80–89Google Scholar
  72. 72.
    Wang X, Li Y, Liu X, Gao S, Huang B, Dai Y (2015) Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity. Chin J Catal 36(3):389–399CrossRefGoogle Scholar
  73. 73.
    Wu C, Gao Z, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y (2016) Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation. J Energ Chem 25(4):726–733CrossRefGoogle Scholar
  74. 74.
    Grabstanowicz LR, Gao S, Li T, Rickard RM, Rajh T, Liu D, Xu T (2013) Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg Chem 52(7):3884–3890PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Xin X, Xu T, Yin J, Wang L, Wang C (2015) Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Appl Catal B 176-177:354–362CrossRefGoogle Scholar
  76. 76.
    Zhu G, Shan Y, Lin T, Zhao W, Xu J, Tian Z, Zhang H, Zheng C, Huang F (2016) Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8(8):4705–4712PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Liu M, Qiu X, Miyauchi M, Hashimoto K (2011) Cu(II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: an efficient visible light photocatalyst. Chem Mater 23(23):5282–5286CrossRefGoogle Scholar
  78. 78.
    Fang W, Khrouz L, Zhou Y, Shen B, Dong C, Xing M, Mishra S, Daniele S, Zhang J (2017) Reduced {001}-TiO2-x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys 19(21):13875–13881PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zhu Q, Peng Y, Lin L, Fan C, Gao G, Wang R, Xu A (2014) Stable blue TiO2-x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2(12):4429–4437CrossRefGoogle Scholar
  80. 80.
    Qiu M, Tian Y, Chen Z, Yang Z, Li W, Wang K, Wang L, Wang K, Zhang W (2016) Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv 6(78):74376–74383CrossRefGoogle Scholar
  81. 81.
    Chen X, Liu L, Liu Z, Marcus MA, Wang W, Oyler NA, Grass ME, Mao B, Glans PA, Yu P, Guo J, Mao S (2013) Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci Rep 3:1510PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134(18):7600–7603PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644CrossRefGoogle Scholar
  84. 84.
    Liu Y, Wang J, Yang P, Matras-Postolek K (2015) Self-modification of TiO2 one-dimensional nano-materials by Ti3+ and oxygen vacancy using Ti2O3 as precursor. RSC Adv 5(76):61657–61663CrossRefGoogle Scholar
  85. 85.
    Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132(34):11856–11857PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229CrossRefGoogle Scholar
  87. 87.
    Fang W, Dappozze F, Guillard C, Zhou Y, Xing M, Mishra S, Daniele S, Zhang J (2017) Zn-assisted TiO2-x photocatalyst with efficient charge separation for enhanced photocatalytic activities. J Phys Chem C 121:17068CrossRefGoogle Scholar
  88. 88.
    Livraghi S, Chiesa M, Paganini MC, Giamello E (2011) On the nature of reduced states in titanium dioxide as monitored by electron paramagnetic resonance. I: the anatase case. J Phys Chem C 115(51):25413–25421CrossRefGoogle Scholar
  89. 89.
    Sekiya T, Kurita S (2008) Defects in anatase titanium dioxide. In: Ohno K, Tanaka M, Takeda J, Kawazoe Y (eds) Nano- and micromaterials, vol 9. Springer, Berlin/Heidelberg, pp 121–141CrossRefGoogle Scholar
  90. 90.
    Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Giannakas AE, Antonopoulou M, Deligiannakis Y, Konstantinou I (2013) Preparation, characterization of N-I co-doped TiO2 and catalytic performance toward simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl Catal B 140:636–645CrossRefGoogle Scholar
  92. 92.
    Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf Sci 598(1–3):226–245CrossRefGoogle Scholar
  93. 93.
    Fischer S, Schierbaum K-D, Göpel W (1997) Surface defects and platinum overlayers on TiO2(110) surfaces: STM and photoemission studies. Vacuum 48(7–9):601–605CrossRefGoogle Scholar
  94. 94.
    Chen C, Chen T, Chen C, Lai Y, You J, Chou T, Chen C, Lee J (2012) Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation. Langmuir 28(26):9996–10006PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang C, Xie Y, Ma J, Hu J, Zhang C (2015) A composite catalyst of reduced black TiO2-x/CNT: a highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chem Commun 51(98):17459–17462CrossRefGoogle Scholar
  96. 96.
    Liao W, Murugananthan M, Zhang Y (2015) Synthesis of Z-scheme g-C3N4-Ti3+/TiO2 material: an efficient visible light photoelectrocatalyst for degradation of phenol. Phys Chem Chem Phys 17(14):8877–8884PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ioannidou E, Ioannidi A, Frontistis Z, Antonopoulou M, Tselios C, Tsikritzis D, Konstantinou I, Kennou S, Kondarides DI, Mantzavinos D (2016) Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Appl Catal B 188:65–76CrossRefGoogle Scholar
  98. 98.
    Qin X, He F, Chen L, Meng Y, Liu J, Zhao N, Huang Y (2016) Oxygen-vacancy modified TiO2 nanoparticles as enhanced visible-light driven photocatalysts by wrapping and chemically bonding with graphite-like carbon. RSC Adv 6(13):10887–10894CrossRefGoogle Scholar
  99. 99.
    Xing M, Li X, Zhang J (2014) Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite. Sci Rep 4:5493PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang J, Yang P, Huang B (2015) Self-doped TiO2-x nanowires with enhanced photocatalytic activity: facile synthesis and effects of the Ti3+. Appl Surf Sci 356:391–398CrossRefGoogle Scholar
  101. 101.
    Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, Spiecker E, Schmuki P (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14(6):3309–3313PubMedCrossRefGoogle Scholar
  102. 102.
    Yan X, Xing Z, Cao Y, Hu M, Li Z, Wu X, Zhu Q, Yang S, Zhou W (2017) In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts. Appl Catal B 219:572–579CrossRefGoogle Scholar
  103. 103.
    Zheng J, Bao S, Zhang X, Wu H, Chen R, Jin P (2016) Pd–MgNix nanospheres/black-TiO2 porous films with highly efficient hydrogen production by near-complete suppression of surface recombination. Appl Catal B 183:69–74CrossRefGoogle Scholar
  104. 104.
    Liu L, Zhao C, Li Y (2012) Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J Phys Chem C 116(14):7904–7912CrossRefGoogle Scholar
  105. 105.
    Sasan K, Zuo F, Wang Y, Feng P (2015) Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation. Nanoscale 7(32):13369–13372PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Zhang L, Wang W, Jiang D, Gao E, Sun S (2015) Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res 8(3):821–831CrossRefGoogle Scholar
  107. 107.
    Yin G, Bi Q, Zhao W, Xu J, Lin T, Huang F (2017) Efficient conversion of CO2 to methane Photocatalyzed by conductive black titania. ChemCatChem:n/a-n/aGoogle Scholar
  108. 108.
    Fu R, Wang Q, Gao S, Wang Z, Huang B, Dai Y, Lu J (2015) Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides. J Power Sources 285:449–459CrossRefGoogle Scholar
  109. 109.
    Li K, Huang Z, Zeng X, Huang B, Gao S, Lu J (2017) Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl Mater Interfaces 9(13):11577–11586PubMedCrossRefGoogle Scholar
  110. 110.
    Zhu Y, Shah MW, Wang C (2017) Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2-x heterojunction. Appl Catal B 203:526–532CrossRefGoogle Scholar
  111. 111.
    Zhang X, Zuo G, Lu X, Tang C, Cao S, Yu M (2017) Anatase TiO2 sheet-assisted synthesis of Ti3+ self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: roles of anatase TiO2 sheet. J Colloid Interface Sci 490:774–782PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Duan Y, Zhang M, Wang L, Wang F, Yang L, Li X, Wang C (2017) Plasmonic Ag-TiO2−x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies. Appl Catal B 204:67–77CrossRefGoogle Scholar
  113. 113.
    Singh AP, Kodan N, Mehta BR, Dey A, Krishnamurthy S (2016) In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties. Mater Res Bull 76:284–291CrossRefGoogle Scholar
  114. 114.
    Zhang Q, Wang L, Feng J, Xu H, Yan W (2014) Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO2 nanotube arrays. Phys Chem Chem Phys 16(42):23431–23439PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zheng J, Liu Y, Ji G, Zhang P, Cao X, Wang B, Zhang C, Zhou X, Zhu Y, Shi D (2015) Hydrogenated oxygen-deficient blue anatase as anode for high-performance lithium batteries. ACS Appl Mater Inter 7(42):23431–23438CrossRefGoogle Scholar
  116. 116.
    Wang C, Wang F, Zhao Y, Li Y, Yue Q, Liu Y, Liu Y, Elzatahry AA, Al-Enizi A, Wu Y, Deng Y, Zhao D (2016) Hollow TiO2-x porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res 9(1):165–173CrossRefGoogle Scholar
  117. 117.
    Shang M, Hu H, Lu G, Bi Y (2016) Synergistic effects of SrTiO3 nanocubes and Ti3+ dual-doping for highly improved photoelectrochemical performance of TiO2 nanotube arrays under visible light. J Mater Chem A 4(16):5849–5853CrossRefGoogle Scholar
  118. 118.
    Su T, Yang Y, Na Y, Fan R, Li L, Wei L, Yang B, Cao W (2015) An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl Mater Inter 7(6):3754–3763CrossRefGoogle Scholar
  119. 119.
    Pan S, Liu X, Guo M, Sf Y, Huang H, Fan H, Li G (2015) Engineering the intermediate band states in amorphous Ti3+-doped TiO2 for hybrid dye-sensitized solar cell applications. J Mater Chem A 3(21):11437–11443CrossRefGoogle Scholar
  120. 120.
    Byeon A, Boota M, Beidaghi M, Aken KV, Lee JW, Gogotsi Y (2015) Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochem Commun 60:199–203CrossRefGoogle Scholar
  121. 121.
    Sang-Joon P, Jeong-Pyo L, Jong Shik J, Hyun R, Hyunung Y, Byung Youn Y, Chang Soo K, Kyung Joong K, Yong Jai C, Sunggi B, Woo L (2013) In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices. Nanotechnology 24(29):295202CrossRefGoogle Scholar
  122. 122.
    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Chen J, Ding Z, Wang C, Hou H, Zhang Y, Wang C, Zou G, Ji X (2016) Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl Mater Inter 8(14):9142–9151CrossRefGoogle Scholar
  124. 124.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  125. 125.
    Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109(23):11414–11419PubMedCrossRefGoogle Scholar
  126. 126.
    Sayed FN, Jayakumar OD, Sasikala R, Kadam RM, Bharadwaj SR, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal JP, Tyagi AK (2012) Photochemical hydrogen generation using nitrogen-doped TiO2-Pd nanoparticles: facile synthesis and effect of Ti3+ incorporation. J Phys Chem C 116(23):12462–12467CrossRefGoogle Scholar
  127. 127.
    Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134(8):3659–3662PubMedCrossRefGoogle Scholar
  128. 128.
    Zhou Y, Yi Q, Xing M, Shang L, Zhang T, Zhang J (2016) Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chem Commun 52(8):1689–1692CrossRefGoogle Scholar
  129. 129.
    Chen Y, Cao X, Lin B, Gao B (2013) Origin of the visible-light photoactivity of NH3-treated TiO2: effect of nitrogen doping and oxygen vacancies. Appl Surf Sci 264:845–852CrossRefGoogle Scholar
  130. 130.
    Zhang K, Zhou W, Chi L, Zhang X, Hu W, Jiang B, Pan K, Tian G, Jiang Z (2016) Black N/H-TiO2 nanoplates with a flower-like hierarchical architecture for photocatalytic hydrogen evolution. ChemSusChem 9(19):2841–2848PubMedCrossRefGoogle Scholar
  131. 131.
    Li B, Zhao Z, Zhou Q, Meng B, Meng X, Qiu J (2014) Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem Eur J 20(45):14763–14770PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Li G, Li J, Li G, Jiang G (2015) N and Ti3+ co-doped 3D anatase TiO2 superstructures composed of ultrathin nanosheets with enhanced visible light photocatalytic activity. J Mater Chem A 3(44):22073–22080CrossRefGoogle Scholar
  133. 133.
    Lin T, Yang C, Wang Z, Yin H, Lu X, Huang F, Lin J, Xie X, Jiang M (2014) Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci 7(3):967–972CrossRefGoogle Scholar
  134. 134.
    Feng N, Liu F, Huang M, Zheng A, Wang Q, Chen T, Cao G, Xu J, Fan J, Deng F (2016) Unravelling the efficient photocatalytic activity of boron-induced Ti3+ species in the surface layer of TiO2. Sci Rep 6:34765PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Xing M, Zhang J, Qiu B, Tian B, Anpo M, Che M (2015) A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11(16):1920–1929PubMedCrossRefGoogle Scholar
  136. 136.
    Xing J, Chen J, Li Y, Yuan W, Zhou Y, Zheng L, Wang H, Hu P, Wang Y, Zhao H, Wang Y, Yang H (2014) Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem Eur J 20(8):2138–2144PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Yuan X, Wang X, Liu X, Ge H, Yin G, Dong C, Huang F (2016) Ti3+-promoted high oxygen-reduction activity of Pd nanodots supported by black titania nanobelts. ACS Appl Mater Inter 8(41):27654–27660CrossRefGoogle Scholar
  138. 138.
    Bonneviot L, Haller GL (1988) EPR characterization of Ti3+ ions at the metal-support interface in PtTiO2 catalysts. J Catal 113(1):96–105CrossRefGoogle Scholar
  139. 139.
    Lian Z, Wang W, Li G, Tian F, Schanze KS, Li H (2016) Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution. ACS Appl Mater InterGoogle Scholar
  140. 140.
    Pillay D, Hwang GS (2005) Growth and structure of small gold particles on rutile TiO2(110). Phys Rev B 72(20):205422CrossRefGoogle Scholar
  141. 141.
    Albuquerque AR, Bruix A, dos Santos IMG, Sambrano JR, Illas F (2014) DFT study on Ce-doped anatase TiO2: nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J Phys Chem C 118(18):9677–9689CrossRefGoogle Scholar
  142. 142.
    Bennett T, Adnan RH, Alvino JF, Kler R, Golovko VB, Metha GF, Andersson GG (2015) Effect of gold nanoclusters on the production of Ti3+ defect sites in titanium dioxide nanoparticles under ultraviolet and soft X-ray radiation. J Phys Chem C 119(20):11171–11177CrossRefGoogle Scholar
  143. 143.
    Zhao J, Li Y, Zhu Y, Wang Y, Wang C (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu. Appl Catal A-Gen 510:34–41CrossRefGoogle Scholar
  144. 144.
    Pan X, Xu YJ (2013) Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: a novel strategy to design defect-based composite photocatalyst. Appl Catal A-Gen 459:34–40CrossRefGoogle Scholar
  145. 145.
    Chen P (2016) A novel synthesis of Ti3+ self-doped Ag2O/TiO2(p–n) nanoheterojunctions for enhanced visible photocatalytic activity. Mater Lett 163:130–133CrossRefGoogle Scholar
  146. 146.
    Li M, Liu H, Liu T, Qin Y (2017) Design of a novel dual Z-scheme photocatalytic system composited of Ag2O modified Ti3+ self doped TiO2 nanocrystals with individual exposed (001) and (101) facets. Mater Charact 124:136–144CrossRefGoogle Scholar
  147. 147.
    Cui Y, Ma Q, Deng X, Meng Q, Cheng X, Xie M, Li X, Cheng Q, Liu H (2017) Fabrication of Ag-Ag2O/reduced TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for degradation of diclofenac solution. Appl Catal B 206:136–145CrossRefGoogle Scholar
  148. 148.
    Yin H, Wang X, Wang L, Nie Q, Zhang Y, Yuan Q, Wu W (2016) Ag/AgCl modified self-doped TiO2 hollow sphere with enhanced visible light photocatalytic activity. J Alloys Compd 657:44–52CrossRefGoogle Scholar
  149. 149.
    Colón G, Maicu M, Hidalgo MC, Navío JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B 67(1–2):41–51CrossRefGoogle Scholar
  150. 150.
    Liu L, Gao F, Zhao L, Li Y (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal B 134(0):349–358CrossRefGoogle Scholar
  151. 151.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  152. 152.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  153. 153.
    Wang C, Meng D, Sun J, Memon J, Huang Y, Geng J (2014) Graphene wrapped TiO2 based catalysts with enhanced photocatalytic activity. Adv Mater Interfaces 1(4):1300150CrossRefGoogle Scholar
  154. 154.
    Li L, Yu L, Lin Z, Yang G (2016) Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl Mater Inter 8(13):8536–8545CrossRefGoogle Scholar
  155. 155.
    Cao S, Liu T, Tsang Y, Chen C (2016) Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO2 hybrids. Appl Surf Sci 382:225–238CrossRefGoogle Scholar
  156. 156.
    Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T, Zou Z (2015) Carbon coating stabilized Ti3+-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation. Dalton Trans 44(28):12812–12817PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Liu Y, Xing M, Zhang J (2014) Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity. Chin J Catal 35(9):1511–1519CrossRefGoogle Scholar
  158. 158.
    Yi Q, Zhou Y, Xing M, Zhang J (2016) Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic activity. Res Chem Intermed 42(5):4181–4189CrossRefGoogle Scholar
  159. 159.
    Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Inter 7(17):9023–9030CrossRefGoogle Scholar
  160. 160.
    Lu D, Zhang G, Wan Z (2015) Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction. Appl Surf Sci 358:223–230CrossRefGoogle Scholar
  161. 161.
    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl Catal B 201:119–127CrossRefGoogle Scholar
  162. 162.
    Wen M, Zhang S, Dai W, Li G, Zhang D (2015) In situ synthesis of Ti3+ self-doped mesoporous TiO2 as a durable photocatalyst for environmental remediation. Chin J Catal 36(12):2095–2102CrossRefGoogle Scholar
  163. 163.
    Wei S, Wu R, Xu X, Jian J, Wang H, Sun Y (2016) One-step synthetic approach for core-shelled black anatase titania with high visible light photocatalytic performance. Chem Eng J 299:120–125CrossRefGoogle Scholar
  164. 164.
    Wang S, Yang X, Wang Y, Liu L, Guo Y, Guo H (2014) Morphology-controlled synthesis of Ti3+ self-doped yolk-shell structure titanium oxide with superior photocatalytic activity under visible light. J Solid State Chem 213:98–103CrossRefGoogle Scholar
  165. 165.
    Zhu G, Xu J, Zhao W, Huang F (2016) Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Inter 8(46):31716–31721CrossRefGoogle Scholar
  166. 166.
    Qi D, Lu L, Xi Z, Wang L, Zhang J (2014) Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B 160:621–628CrossRefGoogle Scholar
  167. 167.
    Xin L, Liu X (2015) Black TiO2 inverse opals for visible-light photocatalysis. RSC Adv 5(88):71547–71550CrossRefGoogle Scholar
  168. 168.
    Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Xing M, Yang B, Yu H, Tian B, Bagwasi S, Zhang J, Gong X (2013) Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J Phys Chem Lett 4(22):3910–3917CrossRefGoogle Scholar
  170. 170.
    Si L, Huang Z, Lv K, Tang D, Yang C (2014) Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {001} facets using zinc powder as reductant. J Alloys Compd 601:88–93CrossRefGoogle Scholar
  171. 171.
    Wang W, Lu C, Ni Y, Song J, Su M, Xu Z (2012) Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal Commun 22(0):19–23CrossRefGoogle Scholar
  172. 172.
    Wang W, Ni Y, Lu C, Xu Z (2012) Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytic activity. RSC Adv 2(22):8286–8288CrossRefGoogle Scholar
  173. 173.
    Chen S, Li D, Liu Y, Huang W (2016) Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO2 nanocrystals. J Catal 341:126–135CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations