Advertisement

Titanium-Based Mesoporous Materials for Photocatalysis

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

Titanium-based mesoporous materials are always the strong strength in material science. In this part, the chapter has been divided into four parts to elaborately clarify the titanium-based materials. We carefully introduced the history of mesoporous materials and the preparation and application of mesoporous TiO2 materials. Additionally, we presented mesoporous TiO2–SiO2 materials and Ti–SiO2 nanomaterials. Furthermore, we analyzed their application in photocatalysis, such as organic pollutant degradation, photocatalytic hydrogen production, CO2 photoreduction, and NO/NO2 photoreduction. The abovementioned all provide us some inspiration in the field of energy and environment.

Keywords

Titanium Photocatalysis Nanomaterials Water splitting CO2 reduction NO/NO2 reduction 

References

  1. 1.
    Yuan S, Chen Y, Shi L, Fang J, Zhang J, Zhang J, Yamashita H (2007) Synthesis and characterization of Ce-doped mesoporous anatase with long-range ordered mesostructure. Mater Lett 61(21):4283–4286CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843CrossRefGoogle Scholar
  3. 3.
    Ryoo R, Jun S (1997) Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process. J Phys Chem B 101(3):317–320CrossRefGoogle Scholar
  4. 4.
    Mokaya R (2001) Hydrothermally stable restructured mesoporous silica. Chem Commun 10(10):933–934Google Scholar
  5. 5.
    Anpo M (2013) Photocatalytic reduction of CO2 with H2O on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util 1:8–17CrossRefGoogle Scholar
  6. 6.
    Antonelli DM, Ying J (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed 34(18):2014–2017CrossRefGoogle Scholar
  7. 7.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707):152–155CrossRefGoogle Scholar
  8. 8.
    Zhang M, Bando Y, Wada K (2001) Sol-gel template preparation of TiO2 nanotubes and nanorods. J Mater Sci Lett 20(2):167–170CrossRefGoogle Scholar
  9. 9.
    Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M (2005) Direct synthesis of mesoporous titania particles having a crystalline wall. J Am Chem Soc 127(47):16396–16397CrossRefGoogle Scholar
  10. 10.
    Leghari SAK, Sajjad S, Zhang J (2013) Large mesoporous micro-spheres of WO3/TiO2 composite with enhanced visible light photo activity. RSC Adv 3(35):15354CrossRefGoogle Scholar
  11. 11.
    Sheng Q, Yuan S, Zhang J, Chen F (2006) Synthesis of mesoporous titania with high photocatalytic activity by nanocrystalline particle assembly. Microporous Mesoporous Mater 87(3):177–184CrossRefGoogle Scholar
  12. 12.
    Wang Y, Xu H, Wang X, Zhang X, Jia H, Zhang L, Qiu J (2006) A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. J Phys Chem B 110(28):13835–13840CrossRefGoogle Scholar
  13. 13.
    Yue Y, Gao Z (2000) Synthesis of mesoporous TiO2 with a crystalline framework. Chem Commun 18(18):1755–1756Google Scholar
  14. 14.
    Zhao B, Chen F, Liu H, Zhang J (2011) Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J Phys Chem Solids 72(3):201–206CrossRefGoogle Scholar
  15. 15.
    Li Y, Lee N, Lee E, Song J, Kim SJ (2004) The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through self-assembly of nano crystals. Chem Phys Lett 389(1–3):124–128CrossRefGoogle Scholar
  16. 16.
    Fukumoto S, Kitano M, Takeuchi M, Matsuoka M, Anpo M (2008) Photocatalytic hydrogen production from aqueous solutions of alcohol as model compounds of biomass using visible light-responsive TiO2 thin films. Catal Lett 127(1–2):39–43Google Scholar
  17. 17.
    Kikuchi H, Kitano M, Takeuchi M, Matsuoka M, Anpo M, Kamat PV (2006) Extending the photoresponse of TiO2 to the visible light region: photoelectrochemical behavior of TiO2 thin films prepared by the radio frequency magnetron sputtering deposition method. J Phys Chem B 110(11):5537–5541CrossRefGoogle Scholar
  18. 18.
    Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2005) Preparation of visible light-responsive TiO2 thin film photocatalysts by an RF magnetron sputtering deposition method and their photocatalytic reactivity. Chem Lett 34(4):616–617CrossRefGoogle Scholar
  19. 19.
    Kitano M, Tsujimaru K, Anpo M (2006) Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts: effect of the work function of the substrates on the yield of the reaction. Appl Catal A-Gen 314(2):179–183CrossRefGoogle Scholar
  20. 20.
    Buchel G, Denoyel R, Llewellyn PL, Rouquerol J (2001) In situ surfactant removal from MCM-type mesostructures by ozone treatment. J Mater Chem 11(2):589–593CrossRefGoogle Scholar
  21. 21.
    Hitz S, Prins R (1997) Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J Catal 168(2):194–206CrossRefGoogle Scholar
  22. 22.
    Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D (2002) Microwave assisted template removal of siliceous porous materials. Chem Commun 11(11):1186–1187Google Scholar
  23. 23.
    Van Grieken R, Calleja G, Stucky GD, Melero JA, García RA, Iglesias J (2003) Supercritical fluid extraction of a nonionic surfactant template from SBA-15 materials and consequences on the porous structure. Langmuir 19(9):3966–3973CrossRefGoogle Scholar
  24. 24.
    Yang C, Zibrowius B, Schmidt W, Schüth F (2004) Stepwise removal of the copolymer template from mesopores and micropores in SBA-15. Chem Mater 16(15):2918–2925CrossRefGoogle Scholar
  25. 25.
    Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photoch Photobio A 148(1–3):257–261CrossRefGoogle Scholar
  26. 26.
    Tian B, Zhang J, Tong T, Chen F (2008) Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl Catal B-Environ 79(4):394–401CrossRefGoogle Scholar
  27. 27.
    Yuan S, Sheng Q, Zhang J, Chen F, Anpo M, Zhang Q (2005) Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater 79(1–3):93–99CrossRefGoogle Scholar
  28. 28.
    Yuan S, Sheng Q, Zhang J, Chen F, Anpo M, Dai W (2006) Synthesis of Pd nanoparticles in La-doped mesoporous titania with polycrystalline framework. Catal Lett 107(1–2):19–24CrossRefGoogle Scholar
  29. 29.
    Yuan X, Zhang J, Anpo M, He D (2010) Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36(1):83–93CrossRefGoogle Scholar
  30. 30.
    Sajjad S, Leghari SAK, Zhang J (2013) Copper impregnated ionic liquid assisted mesoporous titania: visible light photocatalyst. RSC Adv 3(31):12678CrossRefGoogle Scholar
  31. 31.
    He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344(2):382–389CrossRefGoogle Scholar
  32. 32.
    Wu Y, Xing M, Tian B, Zhang J, Chen F (2010) Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chem Eng J 162(2):710–717CrossRefGoogle Scholar
  33. 33.
    He C, Tian B, Zhang J (2010) N, B, Si-tridoped mesoporous TiO2 with high surface area and excellent visible-light photocatalytic activity. Res Chem Intermed 36(4):349–359CrossRefGoogle Scholar
  34. 34.
    Hao H, Zhang J (2009) The study of Iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater 121(1–3):52–57CrossRefGoogle Scholar
  35. 35.
    Ma Y, Xing M, Zhang J, Tian B, Chen F (2012) Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater 156:145–152CrossRefGoogle Scholar
  36. 36.
    Qiu B, Xing M, Zhang J (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRefGoogle Scholar
  37. 37.
    Dong C, Xing M, Zhang J (2016) Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Mater Horiz 3:608–612CrossRefGoogle Scholar
  38. 38.
    Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99(24):9882–9885CrossRefGoogle Scholar
  39. 39.
    Gao X, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51(2):233–254CrossRefGoogle Scholar
  40. 40.
    Dagan G, Sampath S, Lev O (1995) Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments. Chem Mater 7(3):446–453CrossRefGoogle Scholar
  41. 41.
    Klein S, Thorimbert S, Maier WF (1996) Amorphous microporous titania-silica mixed oxides: preparation, characterization, and catalytic redox properties. J Catal 163(2):476–488CrossRefGoogle Scholar
  42. 42.
    Pabón E, Retuert J, Quijada R, Zarate A (2004) TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polymer inclusion method. Microporous Mesoporous Mater 67(2–3):195–203CrossRefGoogle Scholar
  43. 43.
    Li Z, Hou B, Xu Y, Wu D, Sun Y (2005) Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles. J Colloid Interface Sci 288(1):149–154CrossRefGoogle Scholar
  44. 44.
    Xing M, Qi D, Zhang J, Chen F, Tian B, Bagwas S, Anpo M (2012) Super-hydrophobic fluorination mesoporous MCF/TiO2 composite as a high-performance photocatalyst. J Catal 294:37–46CrossRefGoogle Scholar
  45. 45.
    Gun’ko VM, Zarko VI, Turov VV, Leboda R, Chibowski E, Holysz L, Pakhlov EM, Voronin EF, Dudnik VV, Gornikov YI (1998) CVD-Titania on Fumed silica substrate. J Colloid Interface Sci 198(1):141–156CrossRefGoogle Scholar
  46. 46.
    Fan G, Zou B, Cheng S, Zheng L (2010) Ligandless palladium supported on SiO2-TiO2 as effective catalyst for Suzuki reaction. J Ind Eng Chem 16(2):220–223CrossRefGoogle Scholar
  47. 47.
    Mei F, Liu C, Zhang L, Ren F, Zhou L, Zhao W, Fang Y (2006) Microstructural study of binary TiO2:SiO2 nanocrystalline thin films. J Cryst Growth 292(1):87–91CrossRefGoogle Scholar
  48. 48.
    Siddiquey IA, Furusawa T, Sato M, Honda K, Suzuki N (2008) Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigments 76(3):754–759CrossRefGoogle Scholar
  49. 49.
    Li D (2004) Study on the fluorescence properties of benzopyrylium salt in Ti-HMS. Dyes Pigments 63(1):71–76CrossRefGoogle Scholar
  50. 50.
    Zhao W, Li D, He B, Zhang J, Huang J, Zhang L (2005) The photoluminescence of coumarin derivative encapsulated in MCM-41 and Ti-MCM-41. Dyes Pigments 64(3):265–270CrossRefGoogle Scholar
  51. 51.
    He C, Tian B, Zhang J (2009) Synthesis of thermally stable and highly ordered bicontinuous cubic mesoporous titania-silica binary oxides with crystalline framework. Microporous Mesoporous Mater 126(1–2):50–57CrossRefGoogle Scholar
  52. 52.
    Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219CrossRefGoogle Scholar
  53. 53.
    Aguado J, van Grieken R, López-Muñoz MJ, Marugán J (2002) Removal of cyanides in wastewater by supported TiO2-based photocatalysts. Catal Today 75(1–4):95–102CrossRefGoogle Scholar
  54. 54.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  55. 55.
    Horiuchi Y, Toyao T, Takeuchi M, Matsuoka M, Anpo M (2013) Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion-from semiconducting TiO2 to MOF/PCP photocatalysts. Phys Chem Chem Phys 15(32):13243–13253CrossRefGoogle Scholar
  56. 56.
    Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2-SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49(18):6383–6391CrossRefGoogle Scholar
  57. 57.
    Xing M, Zhang J, Qiu B, Tian B, Anpo M, Che M (2014) A brown mesoporous TiO2−x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11(16):1920–1929CrossRefGoogle Scholar
  58. 58.
    Hill RJ, Long DL, Champness NR, Hubberstey P, Schröder M (2005) New approaches to the analysis of high connectivity materials: design frameworks based upon 44- and 63-subnet tectons. Acc Chem Res 38(4):335–348CrossRefGoogle Scholar
  59. 59.
    Yaghi OM, O’keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRefGoogle Scholar
  60. 60.
    Kitagawa S, Kitaura R, Si N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRefGoogle Scholar
  61. 61.
    Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101(6):1629–1658CrossRefGoogle Scholar
  62. 62.
    Seo JS, Whang D, Lee H, Im Jun S, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404(6781):982–986CrossRefGoogle Scholar
  63. 63.
    Zhou T, Du Y, Borgna A, Hong J, Wang Y, Han J, Zhang W, Xu R (2013) Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci 6(11):3229–3234CrossRefGoogle Scholar
  64. 64.
    Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M (2012) Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti (IV) metal-organic framework. J Phys Chem C 116(39):20848–20853CrossRefGoogle Scholar
  65. 65.
    Wang C, DeKrafft KE, Lin W (2012) Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J Am Chem Soc 134(17):7211–7214CrossRefGoogle Scholar
  66. 66.
    Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ (2012) A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem 124(30):7558–7562CrossRefGoogle Scholar
  67. 67.
    Kataoka Y, Sato K, Miyazaki Y, Masuda K, Tanaka H, Naito S, Mori W (2009) Photocatalytic hydrogen production from water using porous material [Ru2(p-BDC)2]n. Energy Environ Sci 2(4):397–400CrossRefGoogle Scholar
  68. 68.
    Xiao J, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu S, Jiang H (2016) Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters. Angew Chem 128(32):9535–9539CrossRefGoogle Scholar
  69. 69.
    Gomes Silva C, Luz I, Llabrés i, Xamena FX, Corma A, García H (2010) Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem-Eur J 16(36):11133–11138CrossRefGoogle Scholar
  70. 70.
    Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem 124(14):3420–3423CrossRefGoogle Scholar
  71. 71.
    Alvaro M, Carbonell E, Ferrer B, Llabrés i, Xamena FX, Garcia H (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem-Eur J 13(18):5106–5112CrossRefGoogle Scholar
  72. 72.
    Tachikawa T, Choi JR, Fujitsuka M, Majima T (2008) Photoinduced charge-transfer processes on MOF-5 nanoparticles: elucidating differences between metal-organic frameworks and semiconductor metal oxides. J Phys Chem C 112(36):14090–14101CrossRefGoogle Scholar
  73. 73.
    Yang H, He X, Wang F, Kang Y, Zhang J (2012) Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. J Mater Chem 22(41):21849–21851CrossRefGoogle Scholar
  74. 74.
    Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang S, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today 44(1–4):327–332CrossRefGoogle Scholar
  75. 75.
    Takeuchi M, Dohshi S, Eura T, Anpo M (2003) Preparation of titanium-silicon binary oxide thin film photocatalysts by an ionized cluster beam deposition method. Their photocatalytic activity and photoinduced super-hydrophilicity. J Phys Chem B 107(51):14278–14282CrossRefGoogle Scholar
  76. 76.
    Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, Iwamoto N (2000) Photocatalytic decomposition of NO on titanium oxide thin film photocatalysts prepared by an ionized cluster beam technique. Catal Lett 66(3):185–187CrossRefGoogle Scholar
  77. 77.
    Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89(23):5017–5021CrossRefGoogle Scholar
  78. 78.
    Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101(14):2632–2636CrossRefGoogle Scholar
  79. 79.
    Anpo M (1997) In situ characterization of highly dispersed catalysts included within zeolite cavities and their photocatalytic reactivities. Nouv Cim D 19(11):1641–1648CrossRefGoogle Scholar
  80. 80.
    Yamashita H, Anpo M (2004) Application of an ion beam technique for the design of visible light-sensitive, highly efficient and highly selective photocatalysts: ion-implantation and ionized cluster beam methods. Catal Surv Jpn 8(1):35–45CrossRefGoogle Scholar
  81. 81.
    Hu Y, Rakhmawaty D, Matsuoka M, Takeuchi M, Anpo M (2006) Synthesis, characterization and photocatalytic reactivity of Ti-containing micro- and mesoporous materials. J Porous Mater 13(3–4):335–340CrossRefGoogle Scholar
  82. 82.
    Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74(1–3):207–212CrossRefGoogle Scholar
  83. 83.
    Yamashita H, Shiga A, Kawasaki S-i, Ichihashi Y, Ehara S, Anpo M (1995) Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energy Convers Manag 36(6–9):617–620CrossRefGoogle Scholar
  84. 84.
    Ikeue K, Yamashita H, Anpo M (1999) Photocatalytic reduction of CO2 with H2O on titanium oxides prepared within the FSM-16 mesoporous zeolite. Chem Lett 28(11):1135–1136CrossRefGoogle Scholar
  85. 85.
    Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105(35):8350–8355CrossRefGoogle Scholar
  86. 86.
    Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74(3–4):241–248CrossRefGoogle Scholar
  87. 87.
    Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N (1998) Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. J Phys Chem B 102(52):10707–10711CrossRefGoogle Scholar
  88. 88.
    Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal Lett 80(3–4):111–114CrossRefGoogle Scholar
  89. 89.
    Shioya Y, Ikeue K, Ogawa M, Anpo M (2003) Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Appl Catal A-Gen 254(2):251–259CrossRefGoogle Scholar
  90. 90.
    Anpo M, Thomas JM (2006) Single-site photocatalytic solids for the decomposition of undesirable molecules. Chem Commun 31(0):3273–3278CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations