Advertisement

In Situ Characterization of Photocatalytic Activity

  • Jinlong Zhang
  • Baozhu Tian
  • Lingzhi Wang
  • Mingyang Xing
  • Juying Lei
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 100)

Abstract

The recent development of in situ analysis techniques for the trajectory-tracking of reactive oxygen species in the photocatalytic system has efficiently deepened the understanding about the structure–activity relationship, thus allowing the more rational design of the photocatalytic system. Among versatile analysis techniques, fluorescence and infrared spectroscopies are most commonly used ones for revealing the reasonable reaction mechanism. Other techniques such as Raman, electron spin resonance, and surface photovoltage spectroscopies, atomic force microscopy, and NMR have also shown their unique roles in dissecting the reaction process through providing specific information about the surficial states and local heterogeneity of the photocatalyst. Furthermore, the coupling of different technologies provides more comprehensive and accurate understanding about the reaction mechanism.

Keywords

TiO2 ROS In situ Tracking Fluorescence Infrared Raman 

References

  1. 1.
    Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336CrossRefGoogle Scholar
  2. 2.
    Hirakawa T, Nosaka Y (2008) Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J Phys Chem C 112:15818–15823CrossRefGoogle Scholar
  3. 3.
    Wang D, Zhao L, Guo LH et al (2014) Online detection of reactive oxygen species in ultraviolet (UV)-irradiated nano-TiO2 suspensions by continuous flow chemiluminescence. Anal Chem 86:10535–10539CrossRefGoogle Scholar
  4. 4.
    Kakuma Y, Nosaka AY, Nosaka Y (2015) Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Phys Chem Chem Phys 17:18691–18698CrossRefGoogle Scholar
  5. 5.
    Ishibashi K, Fujishima A, Watanabe T et al (2000) Hashimoto, K. Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water. J Phys Chem B 104:4934–4938CrossRefGoogle Scholar
  6. 6.
    Dimitrijevic NM, Rozhkova E, Rajh T (2009) Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species. J Am Chem Soc 131:2893–2899CrossRefGoogle Scholar
  7. 7.
    Tachikawa T, Majima T et al (2010) Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem Soc Rev 39:4802–4819CrossRefGoogle Scholar
  8. 8.
    Naito K, Tachikawa T, Fujitsuka M et al (2008) Real-time single-molecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: applications to TiO2 photocatalysts. J Phys Chem C 112:1048–1059CrossRefGoogle Scholar
  9. 9.
    Xu W, Jain PK, Beberwyck BJ et al (2012) Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. J Am Chem Soc 134:3946–3949CrossRefGoogle Scholar
  10. 10.
    Kim W, Tachikawa T, Moon G et al (2014) Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew Chem Int Ed 53:14036–14041CrossRefGoogle Scholar
  11. 11.
    Tachikawa T, Wang N, Yamashita S et al (2010) Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew Chem Int Ed 49:8593–8597CrossRefGoogle Scholar
  12. 12.
    Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133:7197–7204CrossRefGoogle Scholar
  13. 13.
    Ha JW, Purnima T, Ruberu A et al (2014) Super-resolution mapping of photogenerated electron and hole separation in single metal−semiconductor manocatalysts. J Am Chem Soc 136:1398–1408CrossRefGoogle Scholar
  14. 14.
    Tachikawa T, Yamashita S, Majima T (2010) Probing photocatalytic active sites on a single titanosilicate zeolite with a redox-responsive fluorescent dye. Angew Chem Int Ed 49:432–435CrossRefGoogle Scholar
  15. 15.
    Naito KT, Tachikawa T, Fujitsuka M et al (2009) Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J Am Chem Soc 131:934–936CrossRefGoogle Scholar
  16. 16.
    Szczepankiewicz SH, Colussi AJ, Hoffmann MR et al (2000) Infrared spectra of photoinduced species on hydroxylated titania surfaces. J Phys Chem B 104:9842–9850CrossRefGoogle Scholar
  17. 17.
    Nakamura R, Imanishi A, Murakoshi K et al (2003) In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J Am Chem Soc 125:7443–7450CrossRefGoogle Scholar
  18. 18.
    Sato S, Ueda K, Kawasaki Y et al (2002) In situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films. J Phys Chem B 106:9054–9058CrossRefGoogle Scholar
  19. 19.
    Nakamura R, Nakato Y (2004) Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J Am Chem Soc 126:1290–1298CrossRefGoogle Scholar
  20. 20.
    Sivasankar N, Weare WW, Frei H (2011) Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J Am Chem Soc 133:12976–12979CrossRefGoogle Scholar
  21. 21.
    Zhang M, Respinis MD, Frei H (2014) Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat Chem 6:362–367CrossRefGoogle Scholar
  22. 22.
    Zandi O, Hamann TW (2016) Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem 8:778–783CrossRefGoogle Scholar
  23. 23.
    Krishnan RS, Shankar RK (1981) Raman effect: history of the discovery. J Raman Spectrosc 10:1–8CrossRefGoogle Scholar
  24. 24.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley, New YorkCrossRefGoogle Scholar
  25. 25.
    Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  26. 26.
    Huang Y, Zhang M, Zhao L et al (2014) Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew Chem Int Ed 53:2353–2357CrossRefGoogle Scholar
  27. 27.
    Yan YF, Wang LZ, Tan XJ et al (2016) Surface-enhanced Raman spectroscopy assisted by radical capturer for tracking of plasmon-driven redox reaction. Sci Rep 6:30193CrossRefGoogle Scholar
  28. 28.
    Wang J, Ando RA, Camargo PHC (2015) Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminothiophenol on Au nanoparticles by charge transfer from UV-excited TiO2. Angew Chem Int Ed 54:6909–6912CrossRefGoogle Scholar
  29. 29.
    Qi D, Yan X, Wang L et al (2015) Plasmon-free SERS self-monitoring of catalysis reaction on Au nanoclusters/TiO2 photonic microarray. Chem Commun 51:8813–8816CrossRefGoogle Scholar
  30. 30.
    Tan X, Wang L, Cheng C et al (2016) Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem Commun 52:2893–2896CrossRefGoogle Scholar
  31. 31.
    Alessandri I (2013) Enhancing Raman scattering without plasmons: unprecedented sensitivity achieved by TiO2 Shell-based resonators. J Am Chem Soc 135:5541–5544CrossRefGoogle Scholar
  32. 32.
    Qi D, Lu L, Wang L et al (2014) Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J Am Chem Soc 136:9886–9889CrossRefGoogle Scholar
  33. 33.
    Xing YL, Yan R, Lo S et al (2014) Alumina-coated Ag nanocrystal monolayers as surface- enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res 7:132–143CrossRefGoogle Scholar
  34. 34.
    Yan XF, Xu Y, Tian BZ et al (2017) Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Appl Catal B: Environ.  https://doi.org/10.1016/j.apcatb.2017.10.009 CrossRefGoogle Scholar
  35. 35.
    Sevinc PC, Wang X, Wang Y et al (2011) Simultaneous spectroscopic and topographic near-field imaging of TiO2 single surface states and interfacial electronic coupling. Nano Lett 11:1490–1494CrossRefGoogle Scholar
  36. 36.
    He Y, Rao G, Cao J et al (2016) Simultaneous spectroscopic and topographic imaging of single-molecule interfacial electron-transfer reactivity and local nanoscale environment. J Phys Chem Lett 7:2221–2227CrossRefGoogle Scholar
  37. 37.
    Liu Z, Zhu H, Song N et al (2013) Probing spatially dependent photoinduced charge transfer dynamics to TiO2 nanoparticles using single quantum dot modified atomic force microscopy tips. Nano Lett 13:5563–5569CrossRefGoogle Scholar
  38. 38.
    Liu F, Feng N, Wang Q et al (2017) Transfer channel of photoinduced holes on a TiO2 surface as revealed by solid-state nuclear magnetic resonance and electron spin resonance spectroscopy. J Am Chem Soc 139:10020–10028CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jinlong Zhang
    • 1
  • Baozhu Tian
    • 1
  • Lingzhi Wang
    • 1
  • Mingyang Xing
    • 1
  • Juying Lei
    • 1
  1. 1.Key Laboratory for Advanced Materials & Institute of Fine ChemicalsEast China University of Science & TechnologyShanghaiChina

Personalised recommendations