Neural Interface: Frontiers and Applications

Cochlear Implants
  • Xiaoan SunEmail author
  • Sui Huang
  • Ningyuan Wang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1101)


The theory and implementation of modern cochlear implant are presented in this chapter. Major signal processing strategies of cochlear implants are discussed in detail. Hardware implementation including wireless signal transmission circuit, integrated circuit design of implant circuit, and neural response measurement circuit are provided in the latter part of the chapter. Finally, new technologies that are likely to improve the performance of current cochlear implants are introduced.


Cochlear implant Signal processing strategy Neural response measurement 


  1. 1.
    Abbas PJ, Brown CJ, Shallop JK, Firszt JB, Hughes ML, Hong SH, Staller SJ (1999) Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20:45–59PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Arnoldner C, Riss D, Brunner M, Durisin M, Baumgartner WD, Hamzavi JS (2007) Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol 127:1298–1303PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Baker M, Sarpeshkar R (2007) Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans Biomed Circuits Syst 1:28–38PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Boll SF (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Process 27:113–120CrossRefGoogle Scholar
  5. 5.
    Brown CJ, Abbas PJ (1990) Electrically evoked whole-nerve action potentials: parametric data from the cat. J Acoust Soc Am 88:2205–2210PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Brown CJ, Abbas PJ, Gantz B (1990) Electrically evoked whole-nerve action potentials: data from human cochlear implant user. J Acoust Soc Am 88(3):1385–1391PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Brown CJ, Abbas PJ, Gantz B (1998) Preliminary experience with neural response telemetry in the nucleus CI24M cochlear implant. Am J Otol 19:320–327PubMedPubMedCentralGoogle Scholar
  8. 8.
    Brown CJ, Hughes ML, Lopez SM, Abbas PJ (1999) Relationship between EABR thresholds and levels used to program the Clarion speech processor. Ann Otol Rhinol Laryngol 108(Suppl. 177):50–57CrossRefGoogle Scholar
  9. 9.
    Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J (2000) The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear 21:151–163PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cafarelli Dees D, Dillier N, Lai WK et al (2005) Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the nucleus CI24M cochlear implant system. Audiol Neurotol 10:105–116CrossRefGoogle Scholar
  11. 11.
    Charlet de Sauvage R, Cazals Y, Erre JP, Aran JM (1983) Acoustically derived auditory nerve action potential evoked by electrical stimulation: an estimation of the waveform of single unit contribution. J Acoust Soc Am 73:616–627CrossRefGoogle Scholar
  12. 12.
    Chaturvedi V, Anand T, Amrutur B (2013) An 8-to-1 bit 1-MS/s SAR ADC with VGA and integrated data compression for neural recording. IEEE Trans Very Large Scale Integr VLSI Syst 21(11):2034–2044CrossRefGoogle Scholar
  13. 13.
    Chen JD, Benesty J, Huang Y, Doclo S (2006) New insights into the noise reduction Wiener filter. IEEE Trans Audio Speech Lang Process 14:1218–1234CrossRefGoogle Scholar
  14. 14.
    Cherry C (1953) Some experiments on the recognition of speech with one and two ears. J Acoust Soc Am 25:975–981CrossRefGoogle Scholar
  15. 15.
    Chun H, Yang Y, Lehmann T (2014) Safety ensuring retinal prosthesis with precise charge balance and low power consumption. IEEE Trans Biomed Circuits Syst 8(1):108–118PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Clark GM, Tong YC, Dowell RC (1984) Comparison of two cochlear implant speech-processing strategies. Ann Otol Rhinol Laryngol 93:127–131PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Crozier PM, Cheetham BMG, Holt C, Munday E (1993) Speech enhancement employing spectral subtraction and linear predictive analysis. Electron Lett 29:1094–1095CrossRefGoogle Scholar
  18. 18.
    Cullington H (2000) Preliminary neural response telemetry results. Br J Audiol 34:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Culurcielllo E, Andreou A (2003) An 8-bit, 1mW successive approximation ADC in SOI CMOS. In: Proceedings of IEEE international symposium on circuit and system, IEEE, Bangkok, Thailand pp 301–304Google Scholar
  20. 20.
    Dillier N, Lai WK, Almqvist B, Frohne C, Müller-Deile J, Stecker M, von Wallenberg E (2002) Measurement of the electrically evoked compound action potential via a neural response telemetry system. Ann Otol Rhinol Laryngol 111(5):407–414PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Doclo S, Spriet A, Wouters J, Moonen M (2007) Frequency-domain criterion for the speech distortion weighted multichannel Wiener filter for robust noise reduction. Speech Comm 49:636–656CrossRefGoogle Scholar
  22. 22.
    Donaldson GS, Kreft HA, Litvak L (2005) Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users (L). J Acoust Soc Am 118(2):623–626PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Douglas SC, Sun XA (2003) Convolutive blind separation of speech mixtures using the natural gradient. Speech Comm 39:65–78CrossRefGoogle Scholar
  24. 24.
    Dowell R, Seligman P, Blamey P, Clark G (1987) Evaluation of a two-formant-estimating speech processor for a multiple-channel cochlear prosthesis. Ann Otol Rhinol Laryngol 96(Suppl. 128):132–134CrossRefGoogle Scholar
  25. 25.
    Dudley H (1939) The vocoder. Bell labs record, 18(4), pp 122–126Google Scholar
  26. 26.
    Eisen MD, Franck KH (2004) Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant users. Ear Hear 25:528–538PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fetterman BL, Domico EH (2002) Speech recognition in background noise of cochlear implant patients. Otolaryngol Head Neck Surg 126:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Firszt JB, Holden LK, Skinner MW, Tobey EA, Peterson A, Gaggl W, Runge-Samuelson CL, Wackym PA (2004) Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear 25:375–387PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Franck KH, Norton SJ (2001) Estimation of psychophyical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear 22:289–299PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fu QJ, Zeng FG, Shannon RV, Soli SD (1998) Importance of tonal envelope cues in Chinese speech recognition. J Acoust Soc Am 104:505–510PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gordon KA, Papsin BC, Harrison RV (2004) Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear 25:447–463PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    He S, Teagle HFB, Buchman CA (2017) The electrically evoked compound action potential: from laboratory to clinic. Front Neurosci 11(Article 339):1–20Google Scholar
  33. 33.
    Hu Y, Loizou PC (2007) A comparative intelligibility study of single-microphone noise reduction algorithms. J Acoust Soc Am 122:1777PubMedCrossRefGoogle Scholar
  34. 34.
    Huang C, Shepherd R, Center P, Seligman P, Tabor B (1999) Electrical stimulation of the auditory nerve: direct current measurement in vivo. IEEE Trans Biomed Eng 46(4):461–469PubMedCrossRefGoogle Scholar
  35. 35.
    Huang S, Xia B, Wang S, Sun X (2015) A novel demodulation technique in reverse telemetry for cochlear device. In: Conference on implantable auditory prostheses, p 119Google Scholar
  36. 36.
    Hughes ML (2010) Fundamentals of clinical ECAP measures in cochlear implants, Part 1: use of the ECAP in speech processor programming, 2nd edn, Audiology Online, November 8, 2010, Article 2347Google Scholar
  37. 37.
    Kendir GA, Liu W, Bashirullah R, Wang G, Humayun MS, Weiland J (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst Regul Pap 52(5):857–866CrossRefGoogle Scholar
  38. 38.
    Kiefer J, Hohl S, Stürzebecher E, Pfennigdorff T, Gstöett-ner W (2001) Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system. Audiology 40(1):32–42PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kim G, Loizou PC (2011) Gain-induced speech distortions and the absence of intelligibility benefit with existing noise-reduction algorithms. J Acoust Soc Am 130:1581–1596PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Koch DB, Osberger MJ, Segal P, Kessler D (2004) HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability. Audiol Neurootol 9(4):214–223PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Koch DB, Downing M, Osberger MJ, Litvak L (2007) Using current steering to increase spectral resolution in CII and HiRes 90K users. Ear Hear 28(2 Suppl):39S–41SGoogle Scholar
  42. 42.
    Kokkinakis K, Loizou PC (2008) Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. J Acoust Soc Am 123:2379–2390PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lai WK, Dillier N (2000) A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiol Neurotol 5:333–345CrossRefGoogle Scholar
  44. 44.
    Li N, Loizou PC (2008) Factors influencing intelligibility of ideal binary-masked speech: implications for noise reduction. J Acoust Soc Am 123:1673–1682PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lim JS, Oppenheim AV (1979) Enhancement and bandwidth compression of Noisy speech. Proc IEEE 67:1586–1604CrossRefGoogle Scholar
  46. 46.
    Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Luo X, Fu QJ (2004) Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants. J Acoust Soc Am 116:3659–3667PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Martin R (1994) Spectral subtraction based on minimum statistics. In: Proceedings European signal process, Edingburgh, Scotland, U.K. pp 1182–1185Google Scholar
  49. 49.
    McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am 91(3367–3371):1992Google Scholar
  50. 50.
    Nagal D (1974) Compound action potential of the cochlear nerve evoked electrically. Arch Otorhinolaryngol 206:293–298CrossRefGoogle Scholar
  51. 51.
    Ping L, Wang N, Tang G, Lu T, Yin L, Tu W, Fu QJ (2017) Implementation and preliminary evaluation of ‘C-tone’: a novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users. Cochlear Implants Int 18(5):240–249PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Plapous C, Marro C, Scalart P (2006) Improved signal-to-noise ratio estimation for speech enhancement. IEEE Trans Audio Speech Lang Process 14:2098–2108CrossRefGoogle Scholar
  53. 53.
    Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York, pp 471–479Google Scholar
  54. 54.
    Ross M, Shaffer H, Cohen A, Freudberg R, Manley H (1974) Average magnitude difference function pitch extractor. IEEE Trans Acoust Speech Signal Process 22:10CrossRefGoogle Scholar
  55. 55.
    Schatzer R, Krenmayr A, Au DK, Zierhofer C (2010) Temporal fine structure in Cochlear implants: preliminary speech perception results in Cantonese speaking implant users. Acta Otolaryngol 130:1031–1039PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Shannon RV, Zeng FG, Kamath V (1995) Speech recognition with primarily temporal cues. Science 270:303–304PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Skinner MW, Holden LK, Holden TA (1991) Performance of postlinguistically deaf adults with the wearable speech processor (WSP III) and mini speech processor (MSP) of the nucleus multi-electrode Cochlear implant. Ear Hear 12:3–22PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Skinner MW, Holden LK, Whitford LA, Plant KL, Psarros C, Holden TA (2002) Speech recognition with the nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults. Ear Hear 23:207–223PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Smoorenburg GF, Willeboer C, van Dijk JE (2002) Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurotol 7:335–347CrossRefGoogle Scholar
  60. 60.
    Sokal NO, Sokal AD (1975) Class-E- a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J Solid State Circuits 10(3):168–176CrossRefGoogle Scholar
  61. 61.
    Spahr AJ, Dorman MF (2004) Performance of subjects fit with the advanced bionics CII and nucleus 3G cochlear implant devices. Arch Otolaryngol Head Neck Surg 130:624–628PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Spriet A, Moonen M, Wouters J (2004) Spatially pre-processed speech distortion weighted multi-channel Wiener filtering for noise reduction. Signal Process 84:2367–2387CrossRefGoogle Scholar
  63. 63.
    Stypulkowski PH, van den Honert C (1984) Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res 14:205–223PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Summers IR, Al-Dabbagh AD (1982) Simulated loss of frequency selectivity and its effects on speech perception. Acoust Lett 5:129–132Google Scholar
  65. 65.
    Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42(5):524–528CrossRefGoogle Scholar
  66. 66.
    Vary P (1985) Noise suppression by spectral magnitude estimation – mechanism and theoretical limits. Signal Process 8:387–400CrossRefGoogle Scholar
  67. 67.
    van de Heyning P, Arauz SL, Atlas M, Baumgartner WD, Caversaccio M, Chester-Browne R et al (2016) Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implants Int 17:251–262PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Van den Bogaert T, Doclo S, Wouters J, Moonen M (2009) Speech enhancement with multichannel wiener filter techniques in multimicrophone binaural hearing aids. J Acoust Soc Am 125:360–371PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Van Dun B, Wouters J, Moonen M (2007) Multi-channel wiener filtering based auditory steady-state response detection. In: IEEE international conference on acoustics, speech and signal processing, Honolulu, Hawaii, USA pp 929–932Google Scholar
  70. 70.
    Van Gerven S, Van Compernolle D (1995) Signal separation by symmetric adaptive decorrelation: stability, convergence, and uniqueness. IEEE Trans Signal Process 43:1602–1612CrossRefGoogle Scholar
  71. 71.
    Weinstein E, Feder M, Oppenheim AV (1993) Multi-channel signal separation by decorrelation. IEEE Trans Signal Process 1:405–413Google Scholar
  72. 72.
    Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wouters J, Vanden Berghe J (2001) Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system. Ear Hear 22:420–430PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zeng FG (2004) Trends in cochlear implants. Trends Amplif 8:1–34PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, Wei C, Cao K (2005) Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci U S A 102:2293–2298PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zeng FG, Rebscher SJ, Fu QJ, Chen H, Sun X, Yin L, Ping L, Feng H, Yang S, Gong S, Yang B, Kang HY, Gao N, Chi F (2015) Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hear Res 322:188–199PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Zeng F, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Nurotron Biotechnology Inc.IrvineUSA

Personalised recommendations