Neural Interface: Frontiers and Applications pp 167-206 | Cite as
Neural Interface: Frontiers and Applications
Cochlear Implants
Chapter
First Online:
Abstract
The theory and implementation of modern cochlear implant are presented in this chapter. Major signal processing strategies of cochlear implants are discussed in detail. Hardware implementation including wireless signal transmission circuit, integrated circuit design of implant circuit, and neural response measurement circuit are provided in the latter part of the chapter. Finally, new technologies that are likely to improve the performance of current cochlear implants are introduced.
Keywords
Cochlear implant Signal processing strategy Neural response measurementReferences
- 1.Abbas PJ, Brown CJ, Shallop JK, Firszt JB, Hughes ML, Hong SH, Staller SJ (1999) Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. Ear Hear 20:45–59PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Arnoldner C, Riss D, Brunner M, Durisin M, Baumgartner WD, Hamzavi JS (2007) Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol 127:1298–1303PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Baker M, Sarpeshkar R (2007) Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans Biomed Circuits Syst 1:28–38PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Boll SF (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Process 27:113–120CrossRefGoogle Scholar
- 5.Brown CJ, Abbas PJ (1990) Electrically evoked whole-nerve action potentials: parametric data from the cat. J Acoust Soc Am 88:2205–2210PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Brown CJ, Abbas PJ, Gantz B (1990) Electrically evoked whole-nerve action potentials: data from human cochlear implant user. J Acoust Soc Am 88(3):1385–1391PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Brown CJ, Abbas PJ, Gantz B (1998) Preliminary experience with neural response telemetry in the nucleus CI24M cochlear implant. Am J Otol 19:320–327PubMedPubMedCentralGoogle Scholar
- 8.Brown CJ, Hughes ML, Lopez SM, Abbas PJ (1999) Relationship between EABR thresholds and levels used to program the Clarion speech processor. Ann Otol Rhinol Laryngol 108(Suppl. 177):50–57CrossRefGoogle Scholar
- 9.Brown CJ, Hughes ML, Luk B, Abbas PJ, Wolaver A, Gervais J (2000) The relationship between EAP and EABR thresholds and levels used to program the nucleus 24 speech processor: data from adults. Ear Hear 21:151–163PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Cafarelli Dees D, Dillier N, Lai WK et al (2005) Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the nucleus CI24M cochlear implant system. Audiol Neurotol 10:105–116CrossRefGoogle Scholar
- 11.Charlet de Sauvage R, Cazals Y, Erre JP, Aran JM (1983) Acoustically derived auditory nerve action potential evoked by electrical stimulation: an estimation of the waveform of single unit contribution. J Acoust Soc Am 73:616–627CrossRefGoogle Scholar
- 12.Chaturvedi V, Anand T, Amrutur B (2013) An 8-to-1 bit 1-MS/s SAR ADC with VGA and integrated data compression for neural recording. IEEE Trans Very Large Scale Integr VLSI Syst 21(11):2034–2044CrossRefGoogle Scholar
- 13.Chen JD, Benesty J, Huang Y, Doclo S (2006) New insights into the noise reduction Wiener filter. IEEE Trans Audio Speech Lang Process 14:1218–1234CrossRefGoogle Scholar
- 14.Cherry C (1953) Some experiments on the recognition of speech with one and two ears. J Acoust Soc Am 25:975–981CrossRefGoogle Scholar
- 15.Chun H, Yang Y, Lehmann T (2014) Safety ensuring retinal prosthesis with precise charge balance and low power consumption. IEEE Trans Biomed Circuits Syst 8(1):108–118PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Clark GM, Tong YC, Dowell RC (1984) Comparison of two cochlear implant speech-processing strategies. Ann Otol Rhinol Laryngol 93:127–131PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Crozier PM, Cheetham BMG, Holt C, Munday E (1993) Speech enhancement employing spectral subtraction and linear predictive analysis. Electron Lett 29:1094–1095CrossRefGoogle Scholar
- 18.Cullington H (2000) Preliminary neural response telemetry results. Br J Audiol 34:131–140PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Culurcielllo E, Andreou A (2003) An 8-bit, 1mW successive approximation ADC in SOI CMOS. In: Proceedings of IEEE international symposium on circuit and system, IEEE, Bangkok, Thailand pp 301–304Google Scholar
- 20.Dillier N, Lai WK, Almqvist B, Frohne C, Müller-Deile J, Stecker M, von Wallenberg E (2002) Measurement of the electrically evoked compound action potential via a neural response telemetry system. Ann Otol Rhinol Laryngol 111(5):407–414PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Doclo S, Spriet A, Wouters J, Moonen M (2007) Frequency-domain criterion for the speech distortion weighted multichannel Wiener filter for robust noise reduction. Speech Comm 49:636–656CrossRefGoogle Scholar
- 22.Donaldson GS, Kreft HA, Litvak L (2005) Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users (L). J Acoust Soc Am 118(2):623–626PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Douglas SC, Sun XA (2003) Convolutive blind separation of speech mixtures using the natural gradient. Speech Comm 39:65–78CrossRefGoogle Scholar
- 24.Dowell R, Seligman P, Blamey P, Clark G (1987) Evaluation of a two-formant-estimating speech processor for a multiple-channel cochlear prosthesis. Ann Otol Rhinol Laryngol 96(Suppl. 128):132–134CrossRefGoogle Scholar
- 25.Dudley H (1939) The vocoder. Bell labs record, 18(4), pp 122–126Google Scholar
- 26.Eisen MD, Franck KH (2004) Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant users. Ear Hear 25:528–538PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Fetterman BL, Domico EH (2002) Speech recognition in background noise of cochlear implant patients. Otolaryngol Head Neck Surg 126:257–263PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Firszt JB, Holden LK, Skinner MW, Tobey EA, Peterson A, Gaggl W, Runge-Samuelson CL, Wackym PA (2004) Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear 25:375–387PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Franck KH, Norton SJ (2001) Estimation of psychophyical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear 22:289–299PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Fu QJ, Zeng FG, Shannon RV, Soli SD (1998) Importance of tonal envelope cues in Chinese speech recognition. J Acoust Soc Am 104:505–510PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Gordon KA, Papsin BC, Harrison RV (2004) Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear 25:447–463PubMedCrossRefPubMedCentralGoogle Scholar
- 32.He S, Teagle HFB, Buchman CA (2017) The electrically evoked compound action potential: from laboratory to clinic. Front Neurosci 11(Article 339):1–20Google Scholar
- 33.Hu Y, Loizou PC (2007) A comparative intelligibility study of single-microphone noise reduction algorithms. J Acoust Soc Am 122:1777PubMedCrossRefGoogle Scholar
- 34.Huang C, Shepherd R, Center P, Seligman P, Tabor B (1999) Electrical stimulation of the auditory nerve: direct current measurement in vivo. IEEE Trans Biomed Eng 46(4):461–469PubMedCrossRefGoogle Scholar
- 35.Huang S, Xia B, Wang S, Sun X (2015) A novel demodulation technique in reverse telemetry for cochlear device. In: Conference on implantable auditory prostheses, p 119Google Scholar
- 36.Hughes ML (2010) Fundamentals of clinical ECAP measures in cochlear implants, Part 1: use of the ECAP in speech processor programming, 2nd edn, Audiology Online, November 8, 2010, Article 2347Google Scholar
- 37.Kendir GA, Liu W, Bashirullah R, Wang G, Humayun MS, Weiland J (2005) An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans Circuits Syst Regul Pap 52(5):857–866CrossRefGoogle Scholar
- 38.Kiefer J, Hohl S, Stürzebecher E, Pfennigdorff T, Gstöett-ner W (2001) Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system. Audiology 40(1):32–42PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Kim G, Loizou PC (2011) Gain-induced speech distortions and the absence of intelligibility benefit with existing noise-reduction algorithms. J Acoust Soc Am 130:1581–1596PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Koch DB, Osberger MJ, Segal P, Kessler D (2004) HiResolution and conventional sound processing in the HiResolution bionic ear: using appropriate outcome measures to assess speech recognition ability. Audiol Neurootol 9(4):214–223PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Koch DB, Downing M, Osberger MJ, Litvak L (2007) Using current steering to increase spectral resolution in CII and HiRes 90K users. Ear Hear 28(2 Suppl):39S–41SGoogle Scholar
- 42.Kokkinakis K, Loizou PC (2008) Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. J Acoust Soc Am 123:2379–2390PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Lai WK, Dillier N (2000) A simple two-component model of the electrically evoked compound action potential in the human cochlea. Audiol Neurotol 5:333–345CrossRefGoogle Scholar
- 44.Li N, Loizou PC (2008) Factors influencing intelligibility of ideal binary-masked speech: implications for noise reduction. J Acoust Soc Am 123:1673–1682PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Lim JS, Oppenheim AV (1979) Enhancement and bandwidth compression of Noisy speech. Proc IEEE 67:1586–1604CrossRefGoogle Scholar
- 46.Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Luo X, Fu QJ (2004) Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants. J Acoust Soc Am 116:3659–3667PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Martin R (1994) Spectral subtraction based on minimum statistics. In: Proceedings European signal process, Edingburgh, Scotland, U.K. pp 1182–1185Google Scholar
- 49.McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J Acoust Soc Am 91(3367–3371):1992Google Scholar
- 50.Nagal D (1974) Compound action potential of the cochlear nerve evoked electrically. Arch Otorhinolaryngol 206:293–298CrossRefGoogle Scholar
- 51.Ping L, Wang N, Tang G, Lu T, Yin L, Tu W, Fu QJ (2017) Implementation and preliminary evaluation of ‘C-tone’: a novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users. Cochlear Implants Int 18(5):240–249PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Plapous C, Marro C, Scalart P (2006) Improved signal-to-noise ratio estimation for speech enhancement. IEEE Trans Audio Speech Lang Process 14:2098–2108CrossRefGoogle Scholar
- 53.Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York, pp 471–479Google Scholar
- 54.Ross M, Shaffer H, Cohen A, Freudberg R, Manley H (1974) Average magnitude difference function pitch extractor. IEEE Trans Acoust Speech Signal Process 22:10CrossRefGoogle Scholar
- 55.Schatzer R, Krenmayr A, Au DK, Zierhofer C (2010) Temporal fine structure in Cochlear implants: preliminary speech perception results in Cantonese speaking implant users. Acta Otolaryngol 130:1031–1039PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Shannon RV, Zeng FG, Kamath V (1995) Speech recognition with primarily temporal cues. Science 270:303–304PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Skinner MW, Holden LK, Holden TA (1991) Performance of postlinguistically deaf adults with the wearable speech processor (WSP III) and mini speech processor (MSP) of the nucleus multi-electrode Cochlear implant. Ear Hear 12:3–22PubMedCrossRefPubMedCentralGoogle Scholar
- 58.Skinner MW, Holden LK, Whitford LA, Plant KL, Psarros C, Holden TA (2002) Speech recognition with the nucleus 24 SPEAK, ACE, and CIS speech coding strategies in newly implanted adults. Ear Hear 23:207–223PubMedCrossRefPubMedCentralGoogle Scholar
- 59.Smoorenburg GF, Willeboer C, van Dijk JE (2002) Speech perception in nucleus CI24M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds. Audiol Neurotol 7:335–347CrossRefGoogle Scholar
- 60.Sokal NO, Sokal AD (1975) Class-E- a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J Solid State Circuits 10(3):168–176CrossRefGoogle Scholar
- 61.Spahr AJ, Dorman MF (2004) Performance of subjects fit with the advanced bionics CII and nucleus 3G cochlear implant devices. Arch Otolaryngol Head Neck Surg 130:624–628PubMedCrossRefPubMedCentralGoogle Scholar
- 62.Spriet A, Moonen M, Wouters J (2004) Spatially pre-processed speech distortion weighted multi-channel Wiener filtering for noise reduction. Signal Process 84:2367–2387CrossRefGoogle Scholar
- 63.Stypulkowski PH, van den Honert C (1984) Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear Res 14:205–223PubMedCrossRefPubMedCentralGoogle Scholar
- 64.Summers IR, Al-Dabbagh AD (1982) Simulated loss of frequency selectivity and its effects on speech perception. Acoust Lett 5:129–132Google Scholar
- 65.Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42(5):524–528CrossRefGoogle Scholar
- 66.Vary P (1985) Noise suppression by spectral magnitude estimation – mechanism and theoretical limits. Signal Process 8:387–400CrossRefGoogle Scholar
- 67.van de Heyning P, Arauz SL, Atlas M, Baumgartner WD, Caversaccio M, Chester-Browne R et al (2016) Electrically evoked compound action potentials are different depending on the site of cochlear stimulation. Cochlear Implants Int 17:251–262PubMedCrossRefPubMedCentralGoogle Scholar
- 68.Van den Bogaert T, Doclo S, Wouters J, Moonen M (2009) Speech enhancement with multichannel wiener filter techniques in multimicrophone binaural hearing aids. J Acoust Soc Am 125:360–371PubMedCrossRefPubMedCentralGoogle Scholar
- 69.Van Dun B, Wouters J, Moonen M (2007) Multi-channel wiener filtering based auditory steady-state response detection. In: IEEE international conference on acoustics, speech and signal processing, Honolulu, Hawaii, USA pp 929–932Google Scholar
- 70.Van Gerven S, Van Compernolle D (1995) Signal separation by symmetric adaptive decorrelation: stability, convergence, and uniqueness. IEEE Trans Signal Process 43:1602–1612CrossRefGoogle Scholar
- 71.Weinstein E, Feder M, Oppenheim AV (1993) Multi-channel signal separation by decorrelation. IEEE Trans Signal Process 1:405–413Google Scholar
- 72.Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238PubMedCrossRefPubMedCentralGoogle Scholar
- 73.Wouters J, Vanden Berghe J (2001) Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system. Ear Hear 22:420–430PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Zeng FG (2004) Trends in cochlear implants. Trends Amplif 8:1–34PubMedPubMedCentralCrossRefGoogle Scholar
- 75.Zeng FG, Nie K, Stickney GS, Kong YY, Vongphoe M, Bhargave A, Wei C, Cao K (2005) Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci U S A 102:2293–2298PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Zeng FG, Rebscher SJ, Fu QJ, Chen H, Sun X, Yin L, Ping L, Feng H, Yang S, Gong S, Yang B, Kang HY, Gao N, Chi F (2015) Development and evaluation of the Nurotron 26-electrode cochlear implant system. Hear Res 322:188–199PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Zeng F, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142PubMedPubMedCentralCrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019