Skip to main content

Peripheral Neural Interface

  • Chapter
  • First Online:
Neural Interface: Frontiers and Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1101))

Abstract

Peripheral nervous system, widely spread in the whole body, is the important bridge for the transmission of neural signals. Signals from the central nervous system (brain and spinal cord) are transmitted to different parts of the body by the peripheral nerves, while along the way they also feedback all kinds of sensory information. Certain level of information integration and processing also occurs in the system. It has been shown that neural signals could be extracted from the distal end of the stump, indicating that the bridge is still effective after limb damage or amputation, which is the neurophysiological basis for the research and development of peripheral nerve interface for the prosthetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu H et al (2008) Multisensory five-finger dexterous hand: the DLR/HIT hand II. IEEE/RSJ international conference on intelligent robots and systems, 22–26 September 2008, Nice, France

    Google Scholar 

  2. Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68

    Article  PubMed  Google Scholar 

  3. Reuderink B, Poel M, Nijholt A (2011) The impact of loss of control on movement BCIs. IEEE Trans Neural Syst Rehabil Eng 19(6):628–637

    Article  PubMed  Google Scholar 

  4. McFarland DJ, Wolpaw JR (2008) Brain-computer Interface operation of robotic and prosthetic devices. Computer 41(10):52–56

    Article  Google Scholar 

  5. Dhillon GS et al (2005) Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol 93(5):2625–2633

    Article  CAS  PubMed  Google Scholar 

  6. Xiaofeng Jia, Matthew A. Koenig, Xiaowen Zhang, Jian Zhang, Tongyi Chen, Zhongwei Chen (2007) Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb. J Hand Surg Am 32(5):657–666

    Article  PubMed  Google Scholar 

  7. Rossini PM et al (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783

    Article  PubMed  Google Scholar 

  8. Ledbetter NM et al (2013) Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J Neurophysiol 109(2):580–590

    Article  PubMed  Google Scholar 

  9. Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10(3):173–185

    Article  CAS  PubMed  Google Scholar 

  10. Rolls ET, Treves A (2011) The neuronal encoding of information in the brain. Prog Neurobiol 95(3):448–490

    Article  PubMed  Google Scholar 

  11. Bergman N (1999) Recursive Bayesian estimation, Doctoral dissertation, Department of Electrical Engineering, Linköping University

    Google Scholar 

  12. Chaolin Ma XM, Zhang H, Jiang X, He J (2015) Neuronal representation of stand and squat in the primary motor cortex of monkeys. Behav Brain Funct 11:15

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grewal MS (2011) Kalman filtering. Springer, Berlin

    Google Scholar 

  14. Julier SJ, Uhlmann JK, Durrant-Whyte HF (1995) A new approach for filtering nonlinear systems. In: Proceedings of the American control conference, 21–23 June 1995, Seattle, WA, USA

    Google Scholar 

  15. Ma X et al (2017) Decoding lower limb muscle activity and kinematics from cortical neural spike trains during monkey performing stand and squat movements. Front Neurosci 11:44

    PubMed  PubMed Central  Google Scholar 

  16. Antfolk C et al (2013) Sensory feedback in upper limb prosthetics. Expert Rev Med Devices 10(1):45–54

    Article  CAS  PubMed  Google Scholar 

  17. Deans SA, McFadyen AK, Rowe PJ (2008) Physical activity and quality of life: a study of a lower-limb amputee population. Prosthetics Orthot Int 32(2):186–200

    Article  Google Scholar 

  18. Whitehouse F, Jurgensen C, Block MA (1968) The later life of the diabetic amputee: another look at fate of the second leg. Diabetes 17(8):520–521

    Article  CAS  PubMed  Google Scholar 

  19. Østlie K, Magnus P, Skjeldal OH, Garfelt B, Tambs K (2011) Mental health and satisfaction with life among upper limb amputees: a Norwegian population-based survey comparing adult acquired major upper limb amputees with a control group. Disabil Rehabil 33:17–18, 1594–1607. https://doi.org/10.3109/09638288.2010.540293

    Article  PubMed  Google Scholar 

  20. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345–359

    Article  CAS  PubMed  Google Scholar 

  21. Campbell CS et al (1999) What you feel must be what you see: adding tactile feedback to the trackpoint. In: Proceedings of IFIP INTERACT’99, p 383–390

    Google Scholar 

  22. Mugge W et al (2009) Sensory weighting of force and position feedback in human motor control tasks. J Neurosci 29(17):5476–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ortiz-Catalan M, Hakansson B, Branemark R (2014) An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med 6(257):257re6

    Article  PubMed  Google Scholar 

  24. Cipriani C et al (2008) On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans Robot 24(1):170–184

    Article  Google Scholar 

  25. Childress DS (1980) Closed-loop control in prosthetic systems: historical perspective. Ann Biomed Eng 8(4–6):293–303

    Article  CAS  PubMed  Google Scholar 

  26. Pylatiuk C et al (2004) Progress in the development of a multifunctional hand prosthesis. Conference on engineering in medicine and biology society, 1–5 September 2004, San Francisco, CA, USA

    Google Scholar 

  27. Sasaki Y, Nakayama Y, Yoshida M (2002) Sensory feedback system using interferential current for EMG prosthetic hand. Conference proceedings of second joint Embs-Bmes conference, 23–26 October 2002, Houston, TX, USA

    Google Scholar 

  28. Kaczmarek KA et al (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1–16

    Article  CAS  PubMed  Google Scholar 

  29. Riso RR, Ignagni AR, Keith MW (1991) Cognitive feedback for use with FES upper extremity neuroprostheses. IEEE Trans Biomed Eng 38(1):29–38

    Article  CAS  PubMed  Google Scholar 

  30. Navarro X et al (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258

    Article  PubMed  Google Scholar 

  31. Micera S et al (2006) Hybrid bionic systems for the replacement of hand function. Proc IEEE 94(9):1752–1762

    Article  Google Scholar 

  32. Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472

    Article  PubMed  Google Scholar 

  33. Cipriani C, Controzzi M, Carrozza MC (2011) The SmartHand transradial prosthesis. J Neuroeng Rehabil 8(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cipriani C, Controzzi M, Carrozza MC (2010) Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica 28(06):919–927

    Article  Google Scholar 

  35. Antfolk C et al (2010) SmartHand tactile display: a new concept for providing sensory feedback in hand prostheses. J Plast Surg Hand Surg 44(1):50–53

    Article  Google Scholar 

  36. Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68

    Article  PubMed  Google Scholar 

  37. Almström C, Herberts P, Körner L (1981) Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals. Int Orthop 5(1):15–21

    Article  PubMed  Google Scholar 

  38. Tan DW et al (2014) A neural interface provides long-term stable natural touch perception. Sci Transl Med 6(257):257ra138

    Article  PubMed  PubMed Central  Google Scholar 

  39. Talan J (2014) Neural Interface activates a sense of touch in prosthetic limbs. Neurol Today 14(21):10–11

    Article  Google Scholar 

  40. Xu Q et al (2013) A novel mat-based system for position-varying wireless power transfer to biomedical implants. IEEE Trans Magn 49(8):4774–4779

    Article  Google Scholar 

  41. Zhou H et al (2012) A fully implanted programmable stimulator based on wireless communication for epidural spinal cord stimulation in rats. J Neurosci Methods 204(2):341–348

    Article  PubMed  Google Scholar 

  42. Xu Q et al (2011) A fully implantable stimulator with wireless power and data transmission for experimental use in epidural spinal cord stimulation. Annual international conference of the Ieee engineering in medicine and biology society, 30 August to 3 September 2011, Boston, MA, USA

    Google Scholar 

  43. Qi X et al (2005) A versatile microprocessor-based multichannel stimulator for experimental use in epidural spinal cord stimulation. In: IEEE proceedings of first international conference on neural Interface and control, 28–26 May 2005, Wuhan, China

    Google Scholar 

  44. Cullen DK, Smith DH (2013) Bionic connections. Sci Am 308(1):52–57

    Article  PubMed  Google Scholar 

  45. Bray D (1984) Axonal growth in response to experimentally applied mechanical tension. Dev Biol 102(2):379–389

    Article  CAS  PubMed  Google Scholar 

  46. Heidemann SR, Buxbaum RE (1994) Mechanical tension as a regulator of axonal development. Neurotoxicology 13(1):95–107

    Google Scholar 

  47. Smith DH, Smith DH, Wolf JA, Meaney DF (2004) A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng 7(2):131–139

    Article  Google Scholar 

  48. Pfister BJ et al (2004) Extreme stretch growth of integrated axons. J Neurosci 24(36):7978–7983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harrison RG (1911) On the stereotropism of embryonic cells. Science 34(870):279–281

    Article  CAS  PubMed  Google Scholar 

  50. Rajnicek A, Britland S, McCaig C (1997) Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci 110(23):2905–2913

    PubMed  Google Scholar 

  51. StEpieŃ E, Stanisz J, Korohoda W (1999) Contact guidance of chick embryo neurons on single scratches in glass and on underlying aligned human skin fibroblasts. Cell Biol Int 23(2):105–116

    Article  PubMed  Google Scholar 

  52. Goldner JS et al (2006) Neurite bridging across micropatterned grooves. Biomaterials 27(3):460–472

    Article  CAS  PubMed  Google Scholar 

  53. Fricke R et al (2011) Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32(8):2070–2076

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, P. et al. (2019). Peripheral Neural Interface. In: Zheng, X. (eds) Neural Interface: Frontiers and Applications. Advances in Experimental Medicine and Biology, vol 1101. Springer, Singapore. https://doi.org/10.1007/978-981-13-2050-7_4

Download citation

Publish with us

Policies and ethics