Nonlinear Control of a Variable Speed Wind Energy Conversion System Based PMSG

  • Marwa AyadiEmail author
  • Nabil Derbel
Part of the Green Energy and Technology book series (GREEN)


In this chapter, we present a control system for a variable speed wind turbine based direct-drive permanent magnet synchronous generator. In order to capture the optimal power from the wind and to ensure a maximum efficiency for this system, nonlinear control laws namely backstepping controller and sliding mode controller have been synthesized. Moreover, a blade pitch angle controller has been introduced above rated wind speed to keep the generated power at the designed limit. Finally, to avoid the power fluctuation, the transition between the two control regions has been investigated.


Wind turbine PMSG Blade pitch control Robust control Stability 


  1. Abulanwar, S., Hu, W., Chen, Z., & Iov, F. (2016). Adaptive voltage control strategy for variable-speed wind turbine connected to a weak network. IET Renewable Power Generation, 10(2), 238–249.CrossRefGoogle Scholar
  2. Ayadi, M., & Derbel, N. (2017). Nonlinear adaptive backstepping control for variable-speed wind energy conversion system-based permanent magnet synchronous generator. The International Journal of Advanced Manufacturing Technology, 1–8.Google Scholar
  3. Ayadi, M., Ben Salem, F., & Derbel, N. (2017). Power control of a variable speed wind turbine based on direct torque control of a permanent magnet synchronous generator. International Journal of Digital Signals and Smart Systems, 1(3), 204–223.CrossRefGoogle Scholar
  4. Bahraminejad, B., Iranpour, M. R., & Esfandiari, E. (2014). Pitch control of wind turbines using IT2FL controller versus T1FL controller. International Journal of Renewable Energy Research (IJRER), 4(4), 1065–1077.Google Scholar
  5. Bull, S. R. (2001). Renewable energy today and tomorrow. Proceedings of the IEEE, 89(8), 1216–1226.CrossRefGoogle Scholar
  6. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook (2nd ed.), John Wiley & Sons.CrossRefGoogle Scholar
  7. Cai, W., Fulton, D., & Reichert, K. (2000). Design of permanent magnet motors with low torque ripples: A review. International Conference on Electrical Machines (pp. 1384–1388).Google Scholar
  8. Evangelista, C., Puleston, P., Valenciaga, F., & Fridman, L. M. (2013). Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on Industrial Electronics, 60(2), 538–545.CrossRefGoogle Scholar
  9. Feng, Y., Chen, B., Yu, X., & Yang, Y. (2012). Terminal sliding mode control of induction generator for wind energy conversion systems. In IECON 2012: 38th Annual Conference on IEEE Industrial Electronics Society (pp. 4741–4746). IEEE.Google Scholar
  10. Hwas, A., & Katebi, R. (2012). Wind turbine control using PI pitch angle controller. IFAC Proceedings Volumes, 45(3), 241–246.CrossRefGoogle Scholar
  11. Jerbi, L., Krichen, L., & Ouali, A. (2009). A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system. Electric Power Systems Research, 79(6), 919–925.CrossRefGoogle Scholar
  12. Kachroo, P., & Tomizuka, M. (1996). Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Transactions on Automatic Control, 41(7), 1063–1068.MathSciNetCrossRefGoogle Scholar
  13. Karabacak, M., & Eskikurt, H. I. (2012). Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Applied Mathematical Modelling, 36(11), 5199–5213.MathSciNetCrossRefGoogle Scholar
  14. Kesraoui, M., Korichi, N., & Belkadi, A. (2011). Maximum power point tracker of wind energy conversion system. Renewable energy, 36(10), 2655–2662.CrossRefGoogle Scholar
  15. Kim, H.-W., Kim, S.-S., & Ko, H.-S. (2010). Modeling and control of PMSG-based variable-speed wind turbine. Electric Power Systems Research, 80(1), 46–52.CrossRefGoogle Scholar
  16. Lee, S.-H., Joo, Y.-J., Back, J., and Seo, J. H. (2010). Sliding mode controller for torque and pitch control of wind power system based on pmsg. In IEEE International Conference on Control Automation and Systems (ICCAS) (pp. 1079–1084).Google Scholar
  17. Lescher, F., Zhao, J. Y., & Borne, P. (2005). Robust gain scheduling controller for pitch regulated variable speed wind turbine. Studies in Informatics and Control, 14(4), 299.Google Scholar
  18. Mansour, M., Mansouri, M., & Mmimouni, M. (2011). Study and control of a variable-speed wind-energy system connected to the grid. International Journal of Renewable Energy Research, 1(2), 96–104.Google Scholar
  19. Michalke, G., Hansen, A. D., & Hartkopf, T. (2007). Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. In European Wind Energy Conference and Exhibition.Google Scholar
  20. Pao, L. Y. & Johnson, K. E. (2009). A tutorial on the dynamics and control of wind turbines and wind farms. In IEEE American Control Conference, ACC’09 (pp. 2076–2089).Google Scholar
  21. Ribrant, J., & Bertling, L. (2007). Survey of failures in wind power systems with focus on swedish wind power plants during 1997–2005. In Power Engineering Society General Meeting. IEEE, (pp. 1–8). IEEE.Google Scholar
  22. Rocha, R., Filho, L. S. M. (2003). A multivariable H control for wind energy conversion system. In IEEE Conference on Control Applications, CCA (pp. 206–211).Google Scholar
  23. Simoes, M. G., Bose, B. K., Spiegel, R. J. (1997). Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Transactions on Power Electronics, 12(1), 87–95.CrossRefGoogle Scholar
  24. Stol, K., Rigney, B., & Balas, M. (2000). Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In 2000 ASME Wind Energy Symposium (p. 29).Google Scholar
  25. Stol, K. A., Balas, M. J., et al. (2003). Periodic disturbance accommodating control for blade load mitigation in wind turbines. Transactions-American Society of Mechanical Engineers Journal of Solar Energy Engineering, 125(4), 379–385.CrossRefGoogle Scholar
  26. Valenciaga, F., & Puleston, P. (2008). High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator. IEEE Transactions on Energy Conversion, 23(3), 860–867.CrossRefGoogle Scholar
  27. Vu, N. T.-T., Yu, D.-Y., Choi, H. H., & Jung, J.-W. (2013). T–S fuzzy-model-based sliding-mode control for surface-mounted permanent-magnet synchronous motors considering uncertainties. IEEE Transactions on Industrial Electronics, 60(10), 4281–4291.CrossRefGoogle Scholar
  28. Wang, G.-D., Wai, R.-J., & Liao, Y. (2013). Design of backstepping power control for grid-side converter of voltage source converter-based high-voltage DC wind power generation system. IET Renewable Power Generation, 7(2), 118–133.CrossRefGoogle Scholar
  29. Yang, F., Li, S.-S., Wang, L., Zuo, S., & Song, Q.-W. (2014a). Adaptive backstepping control based on floating offshore high temperature superconductor generator for wind turbines. In Abstract and applied analysis. Hindawi Publishing Corporation.Google Scholar
  30. Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., & Qiu, Y. (2014b). Wind turbine condition monitoring: Technical and commercial challenges. Wind Energy, 17(5), 673–693.CrossRefGoogle Scholar
  31. Zhang, X., Sun, L., Zhao, K., & Sun, L. (2013). Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Transactions on Power Electronics, 28(3), 1358–1365.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National School of Engineering of Sfax (ENIS)University of SfaxSfaxTunisia

Personalised recommendations