Advertisement

Modeling and Comparison of Boost Converter With Cascaded Boost Converters

  • Nesrine BoujelbenEmail author
  • Ferdaous Masmoudi
  • Mohamed Djemel
  • Nabil Derbel
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Photovoltaic (PV) energy is a very important renewable energy source. The output voltage in renewable energy sources a is improved using DC-DC converters, which are the key part in a photovoltaic chain. Among the classic DC-DC topologies, the boost converter is the most used because of its simplicity and high efficiency. The aim with this converter that the switching frequency is limited so the output voltage is reduced. A possible solution to this problem is to use other topologies; the quadratic boost converter results from the generalized cascaded boost topologies with a single switch and the double cascade boost results from the association of two identic elementary boost converters connected in tandem. In this chapter a comparison of the efficiency of the classic boost converter with the two cascaded boost converters is discussed.

Keywords

Boost converter Quadratic boost converter Double cascade boost converter Efficiency 

References

  1. Aamir, M., & Shinwari, M. Y. (2010). Design, implementation and experimental analysis of two-stage boost converter for grid connected photovoltaic system. In 3rd IEEE International Conference on Computer Science & Information Technology, 5, 194–199.Google Scholar
  2. Chen, Z., Yong, W., & Gao, W. (2014). PI and Sliding Mode Control of a Multi-Input-Multi-Output Boost-Boost Converter. WSEAS Transactions on Power Systems, 9, 87–102.Google Scholar
  3. Erickson, R. W., & Maksimovic, D. (1999). Fundamentals of power electronics. Boston: Kluwer Academic.Google Scholar
  4. Hauke, B. (2014). Basic calculation of a boost converter’s power stage. Application Report SLVA372C, Texas Instruments.Google Scholar
  5. Lopez-Santos, O. (2015). Contribution to the DC-AC conversion in photovoltaic systems: Module oriented converters (pp. 99). Ph.D. thesis. LAAS-Toulouse, France.Google Scholar
  6. Lopez-Santos, O., & Martinez-Salamero, L. (2015). Robust sliding-mode control design for a voltage regulated quadratic boost converter. IEEE Transaction on Power Electronics, 30(4), 2313–2327.CrossRefGoogle Scholar
  7. Lopez-Santos, O., Martinez-Salamero, L., Garcia, G., Valderrama-Blavi, H., & Sierra-Polanco, T. (2013a). Comparison of quadratic boost topologies operating under sliding-mode control. In 2013 Brazilian Power Electronics Conference, Gramado, Brazil.Google Scholar
  8. Lopez Santos, O., Martinez-Salamero, L., Garcia, G., Valderrama-Blavi, H., & Mercuri, D. O. (2013b). Efficiency analysis of a sliding-mode controlled quadratic boost converter. IET Power Electronics, 6, 364–373.CrossRefGoogle Scholar
  9. Maksimovic, D., & Cuk, S. (1991). Switching converters with wide DC conversion range. IEEE Transaction on Power Electronics, 6(1), 151–157.CrossRefGoogle Scholar
  10. Meddah, M., Bourahla, M., & Bouchetata, N. (2011). Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques. Revue des Energies Renouvelables ICESD’11 Adrar (pp. 101–112).Google Scholar
  11. Park, S., & Choi, S. (2010). Soft-switched CCM boost converters with high voltage gain for high-power applications. IEEE Transaction on Power Electronics, 25(5), 1211–1217.CrossRefGoogle Scholar
  12. Priya, P., Shabbeer Basha, G., Sujith Niranjan, S. V., & Seyezha, R. Dr. (2016). Investigation of sic mosfet based quadratic boost converter for photovoltaic applications. International Journal of Precious Engineering Research & Applications, 1(3), 26–29.Google Scholar
  13. Selva Kumar, R., Gayathri Deivanayaki, V. P., Vignesh, C. J., & Naveena, P. (2016). Design and comparison of quadratic boost converter with boost converter. International Journal of Engineering Research & Technology, 5(1), 878–881.Google Scholar
  14. Shen, J.-M., Jou, H.-L., & Wu, J.-C. (2012). Novel transformerless grid-connected power converter with negative grounding for photovoltaic generation system. IEEE Transaction on Power Electronics, 27(4), 1818–1829.CrossRefGoogle Scholar
  15. Silveira, G. C., Lessa Tofoli, F., Santos Bezerra, L. D., & Torrico-Bascope, R. P. (2014). A nonisolated DC-DC boost converter with high voltage gain and balanced output voltage. IEEE Transaction on Industrial Electronics, 61(12), 6739–6746.CrossRefGoogle Scholar
  16. Sira-Ramirez H., & Silva-Origoza, R. (2006). Control design techniques in power electronics devices. New Mexico City: Springer.Google Scholar
  17. Suntio, T., Leppaaho, J., Huusari, J., & Nousiainen, L. (2010). Issues on solar-generator interfacing with current-fed MPP-tracking converters. IEEE Transaction on Power Electronics, 25(9), 2409–2419.CrossRefGoogle Scholar
  18. Veera Raghava, J. H. V., & Ranga Rao, C. (2014). A new converter topology for grid connected PV application. International Journal of Engineering & Science Research, 4(6), 256–269.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nesrine Boujelben
    • 1
    Email author
  • Ferdaous Masmoudi
    • 1
  • Mohamed Djemel
    • 1
  • Nabil Derbel
    • 1
  1. 1.Control and Energy Management Laboratory (CEMLab), Sfax Enginering SchoolUniversity of SfaxSfaxTunisia

Personalised recommendations