An FPGA-Based Control of the PMSG on Variable Wind Speed Turbine

  • Hassane Mahmoudi
  • Chafik Ed-DahmaniEmail author
  • Marouane El Azzaoui
Part of the Green Energy and Technology book series (GREEN)


This chapter presents a study of variable wind speed turbine based on Permanent Magnet Synchronous Generator (PMSG) and turbine emulation system by a DC motor with experimental validation. The proposed controls of maximum power point tracking and pitch angle controls enables to extract the maximum power from wind. A field oriented control (FOC) technique was implemented for generator side converter. A new concept of controlling based on Matlab-Simulink for developing compatible controllers with HDL coder in order to generate a VHDL code, will be implemented on System on Chip (SoC) FPGA, the Xilinx Zynq-7000. Simulation and experimental results concerning proposed controls of the Wind Energy Conversion System (WECS) are presented and compared.


FPGA PMSG Wind energy conversion system Vector control VHDL Turbine emulation Matlab-Simulink DC motor HDL coder 


  1. Ackermann, T., & Söder, L. (2005). Wind power in power systems: An introduction (pp. 25–51). Hoboken: Wiley.Google Scholar
  2. Azzaoui, M. E., Mahmoudi, H., & Ed-dahmani, C. (2016). Backstepping control of the doubly fed induction generator using Xilinx system generator for implementation on FPGA. In 2016 5th International Conference on Multimedia Computing and Systems (ICMCS) (pp. 599–604). Marrakech: Morocco.CrossRefGoogle Scholar
  3. Bakouri, A., Mahmoudi, H., Barara, M., Abbou, A., Bennassar, A., & Moutchou, M. (2015). A complete control strategy of DFIG connected to the grid for wind energy conversion systems. In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1–6). Marrakech: Morocco.Google Scholar
  4. Blaabjerg, F., & Chen, Z. (2006). Power electronics for modern wind turbines. San Rafael: Morgan and Claypool.CrossRefGoogle Scholar
  5. Blaabjerg, F., & Ma, K. (2013). Future on power electronics for wind turbine systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1(3), 139–152.CrossRefGoogle Scholar
  6. Boldea, I. (2005). Variable speed generators. Boca Raton: Taylor & Francis.CrossRefGoogle Scholar
  7. Bose, B. K. (2009). Power electronics and motor drives recent progress and perspective. IEEE Transactions on Industrial Electronics, 56(2), 581–588.CrossRefGoogle Scholar
  8. Busca, C., Stan, A. I., Stanciu, T., & Stroe, D. I. (2010). Control of permanent magnet synchronous generator for large wind turbines. In 2010 IEEE International Symposium on Industrial Electronics (pp. 3871–3876). Bari: Italy.CrossRefGoogle Scholar
  9. Hardy, T., & Jewell, W. (2011). Emulation of a 1.5 MW wind turbine with a DC motor. In 2011 IEEE Power and Energy Society General Meeting (pp. 1–8). Detroit, MI: USA.Google Scholar
  10. Kocur, M., Kozak, S., & Dvorscak, B. (2014). Design and implementation of FPGA – Digital based PID controller. In Proceedings of the 2014 15th International Carpathian Control Conference (ICCC) (pp. 233–236). Velke Karlovice: Czech Republic.Google Scholar
  11. Kung, Y. S., Risfendra, R., Lin, Y. D., & Huang, L. C. (2016). FPGA-based sensorless controller for PMSM drives using sliding mode observer and phase locked loop. In 2016 International Conference on Applied System Innovation (ICASI) (pp. 1–4). Okinawa: Japan.Google Scholar
  12. Mohammadi, D., Daoud, L., Rafla, N., & Ahmed-Zaid, S. (2016). ZYNQ-based SoC implementation of an induction machine control algorithm. In 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4). Abu Dhabi: United Arab Emirates.Google Scholar
  13. Monmasson, E., Idkhajine, L., Cirstea, M. N., Bahri, I., Tisan, A., & Naouar, M. W. (2011). FPGAs in industrial control applications. IEEE Transactions on Industrial Informatics, 7(2), 224–243.CrossRefGoogle Scholar
  14. Ovando, R. I., Aguayo, J., & Cotorogea, M. (2007). Emulation of a low power wind turbine with a DC motor in matlab/simulink. In 2007 IEEE Power Electronics Specialists Conference (pp. 859–864). Orlando, FL: USA.CrossRefGoogle Scholar
  15. Pena, R., Círdenas, R., & Asher, G. (2013). Overview of control systems for the operation of DFIGS in wind energy applications. In IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society (pp. 88–95). Vienna: Austria.CrossRefGoogle Scholar
  16. Polinder, H., Pijl, F. V. D., Vilder, G. D., & Tavner, P. (2006). Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transactions on Energy Conversion, 21, 725–733.CrossRefGoogle Scholar
  17. Rogers, P., Kavasseri, R., & Smith, S. C. (2016). An FPGA-based design for joint control and monitoring of permanent magnet synchronous motors. In 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig) (pp. 1–6). Cancun: Mexico.Google Scholar
  18. Tormo, D., Idkhajine, L., Monmasson, E., & Blasco-Gimenez, R. (2016). Evaluation of SoC-based embedded real-time simulators for electromechanical systems. In IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society (pp. 4772–4777). Florence: Italy.CrossRefGoogle Scholar
  19. Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011a). An introduction to wind energy conversion systems. In B. Wu, Y. Lang, N. Zargari, & S. Kouro (Eds.), Power conversion and control of wind energy systems (pp. 1–23). Oxford/Piscataway: Wiley-IEEE Press.CrossRefGoogle Scholar
  20. Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011b). Variable-speed wind energy systems with synchronous generators. In B. Wu, Y. Lang, N. Zargari, & S. Kouro (Eds.), Power conversion and control of wind energy systems (pp. 275–316). Oxford/Piscataway: Wiley/IEEE Press.CrossRefGoogle Scholar
  21. Wu, B., Lang, Y., Zargari, N., & Kouro, S. (2011c). Wind generators and modeling. In B. Wu, Y. Lang, N. Zargari, & S. Kouro (Eds.), Power conversion and control of wind energy systems (pp. 49–85). Oxford/Piscataway: Wiley-IEEE Press.CrossRefGoogle Scholar
  22. Yan, J., Lin, H., Feng, Y., Guo, X., Huang, Y., & Zhu, Z. Q. (2013). Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system. IET Renewable Power Generation, 7(1), 28–35.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hassane Mahmoudi
    • 1
  • Chafik Ed-Dahmani
    • 1
    Email author
  • Marouane El Azzaoui
    • 1
  1. 1.Power Electronics and Control Team, Department of Electrical Engineering Mohammadia School of EngineersMohammed V UniversityRabatMorocco

Personalised recommendations