Advertisement

SSDI-Max Control and Its Applications in Renewable Energies

  • Aida ChérifEmail author
  • Djamila Zehar
  • Nabil Derbel
  • Claude Richard
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The vibration control using piezoelectric elements is an area interesting several industrial sectors. Modal synchronized switch damping on inductor control is a vibration damping technique that combines advantages of passive and active control techniques based on a modal strategy. Within this framework, we propose an improved control technique, which is called modal SSDI-Max. The particularity of this new approach is to maximize the self-generated voltage amplitude by a proper definition of the switch instants (voltage inversion) according to the chosen targeted mode. Following the basic modal synchronized switch damping on inductor technique, the switch is synchronized with the chosen modal coordinate extremum. In the investigated approach, the voltage is increased by waiting for the next voltage extremum following immediately any targeted modal coordinate extremum in a given time window. This chapter presents simulations performed on a model representative of a clamped plate. Damping results are given in the case of multimodal, pulse or noise excitations. The chapter analyses the control time window influence on the damping performance of the system.

Keywords

Piezoelectric Smart structures Modal control Semi active control SSDI-Max Time window 

References

  1. Carriere, M. S. (2010). Crossed synthesis of controllers and observers for robust control of synchronous machine. Ph.D. Thesis, University of Toulouse, France.Google Scholar
  2. Chérif, A., Richard, C., Guyomar, D., Belkhiat, S., & Meddad, M. (2012). Simulation of multimodal vibration damping of a plate structure using a modal SSDI-Max technique. Journal of Intelligent Material Systems and Structures, 23(6), 675–689.CrossRefGoogle Scholar
  3. Clark, W. W. (2000). Vibration control with state-switching piezoelectric materials. Journal of Intelligent Material and Structures, 11, 263–271.CrossRefGoogle Scholar
  4. Cunefare, K. A., & Holdhusen, M. (2004). Optimization of a state-switched absorber applied to a continuous vibrating system. In SPIE SSM Conference Passive Damping and Isolation, San Diego.Google Scholar
  5. Davis, C. L., & Lesieutre, G. A. (2000). Actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness. Journal of Sound and Vibration, 232, 601–617.CrossRefGoogle Scholar
  6. Eielsen, A. A., & Fleming, A. J. (2010). Passive shunt damping of a piezoelectric stack nanopositioner. In American Control Conference, Baltimore (pp. 4963–4968).Google Scholar
  7. Forward, R. L. (1979). Electronic damping of vibrations in optical structures. Applied Optics, 18(5), 690–697.CrossRefGoogle Scholar
  8. Franklin, G. F., Powell, J. D., & Workman, M. L. (1990). Digital control of dynamic systems (2nd ed.). Reading: Addison-Wesley.zbMATHGoogle Scholar
  9. Fuller, C. R., & Jones, J. D. (1987). Experiments on reduction of propeller induced interior noise by active control of cylinder vibration. Journal of Sound and Vibration, 112(2), 398–395.CrossRefGoogle Scholar
  10. Guyomar, D., & Badel, A. (2006). Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach. Journal of Sound and Vibration 294(1–2), 249–268.CrossRefGoogle Scholar
  11. Hagood, N. W., & Von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243–268.CrossRefGoogle Scholar
  12. Harari, S., Richard, C., & Gaudiller, L. (2009). New semi-active multi-modal vibration control using piezoceramic components. Journal of Intelligent Material Systems and Structures, 20, 1603–1613.CrossRefGoogle Scholar
  13. Meyer, Y., & Collet, M. (2011). Active vibration isolation of electronic components by piezocomposite clamped-clamped beam. Mechanical Systems and Signal Processing, 25, 1687–1701.CrossRefGoogle Scholar
  14. Niederberger, D., Morari, M., & Pietrzko, S. (2004). A new control approach for switching shunt damping. In SPIE SSM Conference Passive Damping and Isolation, San Diego.Google Scholar
  15. Petit, L., Lefeuvre, E., Richard, C., & Guyomar, D. (2004). A broadband semi-passive piezoelectric technique for structural damping. In SPIE SSM Conference, Damping and Isolation, San Diego.Google Scholar
  16. Preumont, A., François, A., Bossens, A., & Abu-Hanieh, A. (2002). Force feedback versus acceleration feedback in active vibration isolation. Journal of Sound and Vibration, 257(4), 605–613.CrossRefGoogle Scholar
  17. Richard, T. (2007). Diminution du coefficient de transmission acoustique d’une paroi à l’aide d’amortisseurs piézoélectriques semi-passifs. Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, no 2007ISAL0112.Google Scholar
  18. Richard, C., Guyomar, D., Audigier, D., & Bassaler, H. (2000). Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. In SPIE Smart Structures and Materials Conference, Passive Damping and Isolation, Newport Beach (Vol. 3689, pp. 288–299).Google Scholar
  19. Richard, C., Harari, S., & Gaudiller, L. (2009). Enhanced piezoelectric voltage build-up for semi-active control of smart structures. In SPIE Smart Structures and Materials, San Diego.zbMATHGoogle Scholar
  20. Snyder, S. D., & Hansen, C. H. (1991). Mechanisms of active noise control by vibration sources. Journal of Sound and Vibration, 147(3), 519–525.CrossRefGoogle Scholar
  21. Wu, S., & Bicos, A. S. (1997). Structural vibration damping experiments using improved piezoelectric shunts. Proceedings of the SPIE, 3045, 40–50.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Aida Chérif
    • 1
    Email author
  • Djamila Zehar
    • 2
  • Nabil Derbel
    • 3
  • Claude Richard
    • 4
  1. 1.LAS LaboratoryUniversity of Bordj Bou ArréridjEl AnasserAlgeria
  2. 2.LSI LaboratoryUniversity of Bordj Bou ArréridjEl AnasserAlgeria
  3. 3.CEMLab LaboratoryUniversity of SfaxSfaxTunisia
  4. 4.LGEF Laboratory, INSAUniversity of LyonLyonFrance

Personalised recommendations