Advertisement

A Comparative Study Between PI and Sliding Mode Control for the DFIG of a Wind Turbine

  • Basma Boujoudi
  • Elm’kaddem Kheddioui
  • Nadia Machkour
  • Mohammed Bezza
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter presents a comparative study between the indirect field-oriented control (IFOC) with Proportional-Integral controller (PI) and the sliding mode control of a doubly fed induction machine (DFIG), dedicated to the production of the electrical energy in a wind system. Both types of control are presented in this paper to compare their performances in terms of follow-up of deposits and robustness towards parametric variations of the DFIG.

Keywords

DFIG Indirect field-oriented control IFOC PI Sliding mode Wind turbine 

References

  1. Allam, M., Allam, M., & Djeriri, Y. (2014). Etude comparative entre la commande vectorielle directe et indirecte de la Machine Asynchrone à Double Alimentation (MADA) dédiée à une application éolienne. Journal of Advanced Research in Science and Technology, 1(2), 88–100.Google Scholar
  2. Bedoud, K., Lakel, R., Ali-Rachedi, M., Lekhchine, S., & Bahi, T. (2013). Modelisation d’une chaine de conversion d’energie eolienne basee sur une machine asynchrone a double alimentation. 21 Congres Francais de Mecanique, Bordeaux.Google Scholar
  3. Bekakra, Y., & Ben Attous, D. (2009). A sliding mode speed and flux control of a doubly fed induction machine. In Electrical and Electronics Engineering, IEEE Conference, (I) (pp. 174–178).Google Scholar
  4. Bekakra, Y., & Ben Attous, D. (2010). Speed and flux control for DFOC of doubly fed induction machine using sliding mode controller. Acta Electrotechnica and Informatica, 10(4), 75–81.Google Scholar
  5. Bekakra, Y., & Ben Attous, D. (2011). Sliding mode controls of active and reactive power of a DFIG with MPPT for variable speed wind energy conversion. Australian Journal of Basic and Applied Sciences, 5(12), 2274–2286.Google Scholar
  6. Ben attous, D., Golea, A., & Abdessemed, R. (1998). Commande à structure variable par mode glissant pour la commande vectorielle d’un moteur asynchrone. In ICEL98, USTOran.Google Scholar
  7. Betin, F. (2003). Commande d’actionneurs électriques soumis à une charge mécanique à fortes variations paramétriques. Habilitation à diriger des recherches, Centre de Robotique d’Electrotechnique et d’Automatique, Université de Picardie Jules Verne, 02880 Cuffies.Google Scholar
  8. Boujoudi, B., Machkour, N., & Kheddioui, Elm. (2016). New method for detection and characterization of voltage dips. Molecular Crystals and Liquid Crystals, 641(1), 86–94.CrossRefGoogle Scholar
  9. Bühler, H. (1986). Réglage par Mode de Glissement. Presses Polytechniques Romandes, EPFL, Ecublens, Lausanne.Google Scholar
  10. Delenclos, S. (2016). L’énergie éolienne. http://gte.univ-littoral.fr Google Scholar
  11. El Aimani, S. (2004). Modélisation de différentes technologies d’éoliennes intégrées dans un réseau de moyenne tension. Thesis, Ecole Centrale de Lille, France.Google Scholar
  12. Hashimoto, H., Yamamoto, H., Yanagisawa, D., & Harachima, F. (1986). Brushless servomotor control using VSS approach. In IEEE TAS Annuel Meeting (pp. 72–79).Google Scholar
  13. Mirecki, A. (2005). Etude comparative de chaînes de conversion d’énergie dédiées à une éolienne de petite puissance. Thesis, Institut National Polytechnique, Toulouse.Google Scholar
  14. Namuduri, C., & Sen, P. C. (1986). A servo control system using a self-controlled synchronous motor (SCSM) with sliding mode controller. In IEEE IAS Annuel Meeting (pp. 56–65).Google Scholar
  15. Sabzevari, S., Karimpor, A., & Monfared, M. (2017). MPPT control of wind turbines with wind speed estimation using direct adaptive fuzzy-pi controller. Journal of Renewable and Sustainable Energy, 9, 013302. https://doi.org/10.1063/1.4973447 CrossRefGoogle Scholar
  16. Tamaarat, A., Benakcha, A., & Menacer, A., (2013). Commande des puissances active et réactive dans d’une Chaine de Conversion basée sur une Machine Asynchrone à Double Alimentation. http://hdl.handle.net/123456789/2513 Google Scholar
  17. Uma, S. P., & Manikandan, S. (2013). Control technique for variable speed wind turbine using PI controller. In IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (pp. 640–643).Google Scholar
  18. Young, M. (1989). The technical writer’s handbook. Mill Valley: University Science.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Basma Boujoudi
    • 1
  • Elm’kaddem Kheddioui
    • 1
  • Nadia Machkour
    • 1
  • Mohammed Bezza
    • 2
  1. 1.Laboratory of Physics of the atmosphere, materials and modeling, Faculty of Sciences and Techniques of MohammediaHassan II University of CasablancaMohammediaMorocco
  2. 2.Laboratory of Electronics, Energy, Automation and Information Processing, Faculty of Sciences and Techniques of MohammediaHassan II University of CasablancaMohammediaMorocco

Personalised recommendations