Advertisement

Tannin Degrading Enzymes: Catalytic Properties and Technological Perspectives

  • Mónica L. Chávez-González
  • Luis V. Rodríguez-Duran
  • J. Juan Buenrostro-Figueroa
  • Leonardo Sepúlveda-Torre
  • Juan A. Ascacio-Valdés
  • Raúl Rodríguez-Herrera
  • Cristóbal Noé AguilarEmail author
Chapter

Abstract

Tannins are an interesting group of natural compounds of a polyphenolic nature that can be found in the plant kingdom, principally in leaves, bark, stems, wood, flowers, fruits, and seeds; they are considered to be a plant’s secondary metabolites and the second most abundant group of phenols present in nature. They have several important biological activities such as to participate in defense mechanisms in plants because they form complexes with different compounds, principally proteins; this last property is undesirable in tannin-rich foods and beverages; for this reason, the enzymatic hydrolysis of tannins is a key topic in the food industry. Tannases have been studied because they are versatile and complex enzymes with commercial importance.

Tannases are capable of hydrolyzing complex tannins, hydrolyzable tannins, and gallic or ellagic acid esters. Also, mono- and dioxygenases can be used to biodegrade condensed tannins. Tannases play an important catalytical role in multiple reactions of tannins; however, the use of tannases is limited because production costs are elevated because of their physicochemical properties and regulation mechanisms are insufficiently understood.

The present chapter describes and analyzes a wide variety of aspects of different microbial tannases, such as physicochemical and catalytic properties, and describes and discusses a variety of substrates used to produce different types of tannase. The chapter aims to show the possible uses of tannases in different industries, mainly the food industry, and emphasizes that it is necessary to carry out more in-depth and specific studies on metabolic regulation and new expression systems.

Keywords

Tannases Tannins Biocatalysis Bioprocesses Biotechnological degradation 

References

  1. Abdel-Naby MA, Sherif AA, El-Tanash AB, Mankarios AT (1999) Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. J Appl Microbiol 87(1):108–114.  https://doi.org/10.1046/j.1365-2672.1999.00799.x CrossRefGoogle Scholar
  2. Abdel-Naby MA, El-Tanash AB, Sherief ADA (2016) Structural characterization, catalytic, kinetic and thermodynamic properties of Aspergillus oryzae tannase. Int J Biol Macromol 92:803–811.  https://doi.org/10.1016/j.ijbiomac.2016.06.098 CrossRefPubMedGoogle Scholar
  3. Adachi O, Watanabe M, Yamada H (1968) Studies on fungal tannase. Part II Physicochemical properties of tannase of Aspergillus flavus. Agric Biol Chem 32(9):1079–1085.  https://doi.org/10.1080/00021369.1968.10859195 CrossRefGoogle Scholar
  4. Aguilera-Carbó A, Hernández-Rivera JS, Prado-Barragán LA et al (2007) Ellagic acid production by solid state culture using a Punica granatum husk aqueous extract as culture broth. In: Proceedings of the 5th international congress of food technology, Thessaloniki, GreeceGoogle Scholar
  5. Aissam H, Errachidi F, Penninck MJ, Merzouki M, Benlemlih M (2005) Production of tannase by Aspergillus niger HA37 growing on tannic acid and olive mill waste water. World J Microbiol Biotechnol 21:609–614CrossRefGoogle Scholar
  6. Albertse EH (2002) Cloning, expresion and caracterization of tannase from Aspergillus species. University of the Free State, Bloemfontein, South AfricaGoogle Scholar
  7. Aoki K, Shinke R, Nishira H (1976a) Chemical composition and molecular weight of yeast Tannase. Agric Biol Chem 40(2):297–302.  https://doi.org/10.1080/00021369.1976.10862048 CrossRefGoogle Scholar
  8. Aoki K, Shinke R, Nishira H (1976b) Purification and some properties of yeast Tannase. Agric Biol Chem 40:79–85.  https://doi.org/10.1080/00021369.1976.10861997 CrossRefGoogle Scholar
  9. Ascacio-Valdés JA, Buenrostro JJ, De la Cruz R et al (2014) Fungal biodegradation of pomegranate ellagitannins. J Basic Microbiol 54:28–34CrossRefGoogle Scholar
  10. Ascacio-Valdes J, Aguilera-Carbo A, Buenrostro J et al (2016) The complete biodegradation pathway of ellagitannins by Aspergillus niger in solidstate fermentation. J Basic Microbiol 56:329–336CrossRefGoogle Scholar
  11. Badui-Dergal S (2006) Química de los Alimentos, 4ª edn. Pearson, Nauclapan de Juárez, pp 301–303, 424–427Google Scholar
  12. Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J Ferment Bioeng 77(3):320–323.  https://doi.org/10.1016/0922-338X(94)90242-9 CrossRefGoogle Scholar
  13. Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10(2):191–199.  https://doi.org/10.4067/S0717-34582007000200003 CrossRefGoogle Scholar
  14. Beena PS, Soorej MB, Elyas KK, Bhat Sarita G, Chandrasekaran M (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20(10):1403–1414.  https://doi.org/10.4014/jmb.1004.04038 CrossRefPubMedGoogle Scholar
  15. Belmares-Cerda R, Contreras-Esquivel JC, Rodriguez-Herrera R, Ramirez-Coronel A, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. Lebensm Wiss Technol 37:857–864CrossRefGoogle Scholar
  16. Benoit I, Asther M, Sulzenbacher G, Record E, Marmuse L, Parsiegla G, Gimbert I, Asther M, Bignon C (2006) Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A. FEBS Lett 580(25):5815–5821.  https://doi.org/10.1016/j.febslet.2006.09.039 CrossRefPubMedGoogle Scholar
  17. Bhardwaj R, Singh B, Bhat TK (2003) Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. J Basic Microbiol 43(6):449–461.  https://doi.org/10.1002/jobm.200310273 CrossRefPubMedGoogle Scholar
  18. Böer E, Bode R, Mock HP, Piontek M, Kunze G (2009) Atan1p – an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 26(6):323–337.  https://doi.org/10.1002/yea.1669 CrossRefPubMedGoogle Scholar
  19. Chaitanyakumar A, Anbalagan M (2016) Expression, purification and immobilization of tannase from Staphylococcus lugdunensis MTCC 3614. AMB Express 6(1):89.  https://doi.org/10.1186/s13568-016-0261-5 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chávez-González M, Rodríguez-Durán LV, Balagurusamy N, Prado-Barragán A, Rodríguez R, Contreras JC, Aguilar CN (2012) Biotechnological advances and challenges of tannase: an overview. Food Bioprocess Technol 5(2):445–459.  https://doi.org/10.1007/s11947-011-0608-5 CrossRefGoogle Scholar
  21. Chávez-González ML, Guyot S, Rodríguez-Herrera R, Prado-Barragán A, Aguilar CN (2014) Production profiles of phenolics from fungal tannic acid biodegradation in submerged and solid-state fermentation. Process Biochem 49(4):541–546.  https://doi.org/10.1016/j.procbio.2014.01.031 CrossRefGoogle Scholar
  22. Cruz-Hernández M, Contreras-Esquivel JC, Lara F, Rodríguez R, Aguilar CN (2005) Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert. Z Naturforsch 60:844–848CrossRefGoogle Scholar
  23. De la Cruz R, Ascacio-Valdés J, Buenrostro J et al (2015) Optimization of ellagitannase production by Aspergillus niger GH1 by solid state fermentation. Prep Biochem Biotechnol 45:617–631Google Scholar
  24. de Sena AR, dos Santos ACD, Gouveia MJ, de Mello MRF, Leite TCC, Moreira KA, de Assis SA (2014) Production, characterization and application of a thermostable tannase from Pestalotiopsis guepinii URM 7114. Food Technol Biotechnol 52(4):459–467.  https://doi.org/10.17113/ftb.52.04.14.3743 CrossRefGoogle Scholar
  25. Farias GM, Gorbea C, Elkins JR, Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol Mol Plant Pathol 44(1):51–63.  https://doi.org/10.1016/S0885-5765(05)80094-3 CrossRefGoogle Scholar
  26. Gonçalves HB, Riul AJ, Terenzi HF, Jorge JA, Guimarães LHS (2011) Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents. J Mol Catal B Enzym 71(1):29–35.  https://doi.org/10.1016/j.molcatb.2011.03.005 CrossRefGoogle Scholar
  27. Gonçalves HB, Riul AJ, Quiapim AC, Jorge JA, Guimarães LHS (2012) Characterization of a thermostable extracellular tannase produced under submerged fermentation by Aspergillus ochraceus. Electron J Biotechnol 15(5):4–4.  https://doi.org/10.2225/vol15-issue5-fulltext-5 CrossRefGoogle Scholar
  28. Haslam E, Stangroom J (1966) The esterase and depsidase activities of tannase. Biochem J 99(1):28.  https://doi.org/10.1042/bj0990028 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene 175(1–2):215–221.  https://doi.org/10.1016/0378-1119(96)00153-9 CrossRefPubMedGoogle Scholar
  30. Hendrik AE (2002) Cloning expression and characterization of tannase from Aspergillus species. Tesis, Universidad del estado libre de Bloenfontem de Sudafrica, p 122Google Scholar
  31. Hernández-Rivera J (2008) Producción, purificación y caracterización de la enzima de Aspergillus niger GH1 responsable de la hidrólisis del grupo HHDP de los elagitaninos. Dissertation, University of CoahuilaGoogle Scholar
  32. Huang W, Ni J, Borthwick AJL (2005) Biosynthesis of valonia tanin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus niger SHL 6. Process Biochem 40:1245–1249Google Scholar
  33. Iibuchi S, Minoda Y, Yamada K (1972) Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Aspergillus oryzae no 7. Agric Biol Chem 36(9):1553–1562.  https://doi.org/10.1080/00021369.1968.10859144 CrossRefGoogle Scholar
  34. Iqbal H, Kapoor A (2012) Tannin degradation efficiency of tannase produced by Trichoderma harzianum MTCC 10841 and its biochemical properties. Int J Life Sci Biotechnol Pharm Res 1:106–117Google Scholar
  35. Iwamoto K, Tsuruta H, Nishitaini Y, Osawa R (2008) Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917T. Syst Appl Microbiol 31(4):269–277 doi:j.syapm.2008.05.004CrossRefGoogle Scholar
  36. Jana A, Maity C, Halder SK, Das A, Pati BR, Mondal KC, Das Mohapatra PK (2013) Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochem Eng J 77:161–170.  https://doi.org/10.1016/j.bej.2013.06.002 CrossRefGoogle Scholar
  37. Jiménez N, Esteban-Torres M, Mancheño JM, de Las Rivas B, Muñoz R (2014) Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ Microbiol 80(10):2991–2997.  https://doi.org/10.1128/AEM.00324-14 CrossRefGoogle Scholar
  38. Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M (2007) Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. Appl Microbiol Biotechnol 77(1):77–89.  https://doi.org/10.1007/s00253-007-1124-4 CrossRefPubMedGoogle Scholar
  39. Khanbabaee K, van Ree T (2001) Tannins classification and definition. Nat Prod Rep 18:641–649Google Scholar
  40. Koseki T, Mihara K, Murayama T, Shiono Y (2010) A novel Aspergillus oryzae esterase that hydrolyzes 4-hydroxybenzoic acid esters. FEBS Lett 584(18):4032–4036.  https://doi.org/10.1016/j.febslet.2010.08.021 CrossRefPubMedGoogle Scholar
  41. Kumar M, Beniwal V, Salar RK (2015a) Purification and characterization of a thermophilic tannase from Klebsiella pneumoniae KP715242. Biocatal Agric Biotechnol 4(4):745–751.  https://doi.org/10.1016/j.bcab.2015.10.011 CrossRefGoogle Scholar
  42. Kumar S, Beniwal V, Kumar N, Kumar A, Chhokar V, Khaket TP (2015b) Biochemical characterization of immobilized tannase from Aspergillus awamori. Biocatal Agric Biotechnol 4(3):398–403.  https://doi.org/10.1016/j.bcab.2015.07.004 CrossRefGoogle Scholar
  43. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260.  https://doi.org/10.1016/S0065-2164(08)70463-5 CrossRefPubMedGoogle Scholar
  44. Lekha P, Ramakrishna M, Lonsane B (1993) Strategies for isolation of potent culture capable of producing tannin acyl hydrolase in higher titers. Chem Mikrobio Technol Lebensm 15:5–10Google Scholar
  45. Li ZJ, Guo X, Dawuti G et al (2017) Antifungal activity of ellagic acid in vitro and in vivo. Phytother Res 29:1019–1025CrossRefGoogle Scholar
  46. Liu R, Li J, Cheng Y et al (2015) Effects of ellagic acid-rich extract of pomegranates peel on regulation of cholesterol metabolism and its molecular mechanism in hamsters. Food Funct 6:780–787CrossRefGoogle Scholar
  47. Liu T, Costa R, Freitas DJD, Nacimento CO, Motta CMD, Bezerra RP, Herculano PN, Porto ALF (2017) Tannase from Aspergillus melleus improves the antioxidant activity of green tea: purification and biochemical characterisation. Int J Food Sci Technol 52(3):652–661.  https://doi.org/10.1111/ijfs.13318 CrossRefGoogle Scholar
  48. Mahadevan A, Muthukumar G (1980) Aquatic microbiology with reference to tannin degradation. Hydrobiologia 72:73–79CrossRefGoogle Scholar
  49. Manach C, Scalbert A (2005) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747CrossRefGoogle Scholar
  50. Mata-Gómez MA, Rodríguez LV, Ramos EL, Renovato J, Cruz-Hernández MA, Rodríguez R, Contreras J, Aguilar CN (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19(9):987–996.  https://doi.org/10.4014/jmb.0811.615 CrossRefPubMedGoogle Scholar
  51. Mohapatra KP, Mondal Mondal KC, Pati BR (2006) Production of Tannasa through submerged fermentation on tannin-containing plant extracts by Bacillus lichiniformis KBR6. Pol J Microbiol 55:297–301PubMedGoogle Scholar
  52. Mondal KC, Banerjee D, Banerjee R, Pati RB (2001) Production and characterization of tannse from Bacillus cereus KBR9 J. GenAppl Microbiol 47:263–267Google Scholar
  53. Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol Biochem 39(7):1479–1492CrossRefGoogle Scholar
  54. Nicácio AE, Rotta EM, Boeing JS et al (2017) Antioxidant activity and determination of phenolics compounds from Eugenia involucrata DC. fruits by UHPLC/MS/MS. Food Anal Methods 10:1–11CrossRefGoogle Scholar
  55. Nip WK, Burns EE (1971) Pigment characterization in grain sorghum. II. White varieties. Cereal Chem 48:74Google Scholar
  56. Paranthaman R, Kumaravel S, Singaravadivel K (2013) Development of bioprocess technology for the production of bioactive compounds, ellagic acid from tea waste. Curr Res Microbiol Biotechnol 1:270–273Google Scholar
  57. Pepi M, Lampariello LR, Altieri R, Esposito A, Perra G, Renzi M, Lobianco A, Feola A, Gasperini S, Focardi SE (2010) Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. Int Biodeterior Biodegrad 64(1):73–80CrossRefGoogle Scholar
  58. Priyadarsini KI, Khopde SM, Kumar SS et al (2002) Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agric Food Chem 50:2200–2260CrossRefGoogle Scholar
  59. Rajak R, Singh A, Banerjee R (2017) Biotransformation of hydrolysable tannin to ellagic acid by tannase from Aspergillus awamori. Biocatal Biotransformation 35:27–34CrossRefGoogle Scholar
  60. Ramírez-Coronel MA, Viniegra-González G, Darvill A, Augur C (2003) A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology 149(10):2941–2946.  https://doi.org/10.1099/mic.0.26346-0 CrossRefPubMedGoogle Scholar
  61. Rana NK, Bhat TK (2005) Effect of fermentation system on the production and properties of tannase of Aspergillus niger van Tieghem MTCC 2425. J Gen Appl Microbiol 51(4):203–212.  https://doi.org/10.2323/jgam.51.203 CrossRefPubMedGoogle Scholar
  62. Ren B, Wu M, Wang Q, Peng X, Wen H, McKinstry WJ, Chen Q (2013) Crystal structure of tannase from Lactobacillus plantarum. J Mol Biol 425(15):2737–2751.  https://doi.org/10.1016/j.jmb.2013.04.032 CrossRefPubMedGoogle Scholar
  63. Renovato J, Gutiérrez-Sánchez G, Rodríguez-Durán LV, Bergman C, Rodríguez R, Aguilar CN (2011) Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Appl Biochem Biotechnol 165(1):382.  https://doi.org/10.1007/s12010-011-9258-3 CrossRefPubMedGoogle Scholar
  64. Riul AJ, Gonçalves HB, Jorge JA, Guimarães LHS (2013) Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. J Mol Catal B Enzym 85:126–133.  https://doi.org/10.1016/j.molcatb.2012.09.001 CrossRefGoogle Scholar
  65. Rodríguez-Durán LV, Valdivia-Urdiales B, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN (2011) Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res 2011:1–20.  https://doi.org/10.4061/2011/823619 CrossRefGoogle Scholar
  66. Saavedra-Pinto GA, Couri S, Ferreira-Leite GS, De Brito SE (2005) Tanase: conceitos, produção e aplicação. BCEPPA Curitiba 23:435–462Google Scholar
  67. Sabu A, Kiran GS, Pandey A (2005) Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technol Biotechnol 43(2):133–138Google Scholar
  68. Sarabhai S, Harjai K, Sharma P et al (2015) Ellagic acid derivatives from Terminali chebula Retz. increase susceptibility of Pseudomonas aeruginosa to stress by inhibiting polyphosphate kinase. J Appl Microbiol 118:817–825CrossRefGoogle Scholar
  69. Schons PF, Battestin V, Alves-Macedo G (2012) Fermentation and enzyme treatments for sorghum. Braz J Microbiol 43(1):89–97.  https://doi.org/10.1590/S1517-83822012000100010 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sepúlveda L, Ascacio A, Rodríguez-Herrera R et al (2011) Ellagic acid: biological properties and biotechnological development for production processes. Afr J Biotechnol 10:4518–4523Google Scholar
  71. Sepúlveda L, Aguilera-Carbó A, Ascacio-Valdés A et al (2012) Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochem 47:2119–2203CrossRefGoogle Scholar
  72. Sepúlveda L, Buenrostro-Figueroa JJ, Ascacio-Valdés JA et al (2014) Submerged culture for production of ellagic acid from pomegranate husk by Aspergillus niger GH1. Micol Aplicada Int 26:27–35Google Scholar
  73. Sharma KP, John PJ (2011) Purification and characterization of tannase and tannase gene from Enterobacter sp. Process Biochem 46(1):240–244.  https://doi.org/10.1016/j.procbio.2010.08.016 CrossRefGoogle Scholar
  74. Sharma S, Bhat TK, Dawra RK (1999) Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J Microbiol Biotechnol 15(6):673–677.  https://doi.org/10.1023/A:1008939816281 CrossRefGoogle Scholar
  75. Sharma S, Agarwal L, Saxena RK (2008) Purification, immobilization and characterization of tannase from Penicillium variable. Bioresour Technol 99(7):2544–2551.  https://doi.org/10.1016/j.biortech.2007.04.035 CrossRefPubMedGoogle Scholar
  76. Skene IK, Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium. Anaerobe 1(6):321–327.  https://doi.org/10.1006/anae.1995.1034 CrossRefPubMedGoogle Scholar
  77. Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH, Haslam E (1988) Polyphenol complexation some thoughts and observation. Phytochemistry 27:2397–2409CrossRefGoogle Scholar
  78. Treviño L, Contreras-Esquivel JC, Rodríguez-Herrera R, Aguilar CN (2007) Effets of polyurethane matrices on fangal tannase and gallic acid production under solid state culture. J Zhejiang Univ Sci B 8:771–776CrossRefGoogle Scholar
  79. Valera LS, Jorge JA, Guimarães LHS (2015) Characterization of a multi-tolerant tannin acyl hydrolase II from Aspergillus carbonarius produced under solid-state fermentation. Electron J Biotechnol 18(6):464–470.  https://doi.org/10.1016/j.ejbt.2015.09.008 CrossRefGoogle Scholar
  80. Yoshida T, Amakura Y, Koyura N et al (1999) Oligomeric hydrolizable tannins from Tiouchina multiflora. Phytochemistry 52:1661–1666CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mónica L. Chávez-González
    • 1
  • Luis V. Rodríguez-Duran
    • 2
  • J. Juan Buenrostro-Figueroa
    • 3
  • Leonardo Sepúlveda-Torre
    • 1
  • Juan A. Ascacio-Valdés
    • 1
  • Raúl Rodríguez-Herrera
    • 1
  • Cristóbal Noé Aguilar
    • 1
    Email author
  1. 1.Research Group of Bioprocesses and Bioproducts, Food Research DepartmentSchool of Chemistry, Universidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Department of Biochemical Engineering Unidad Académica Multidisciplinaria ManteUniversidad Autónoma de TamaulipasCd. ManteMexico
  3. 3.Research Center in Food and DevelopmentCd. DeliciasMexico

Personalised recommendations