Advertisement

Fungal Inulinases: An Interesting Option for Food Sweetener Production

  • Adriana C. Flores-Gallegos
  • Fabiola Veana
  • Silvia M. González-Herrera
  • Diana B. Muñiz-Márquez
  • Aidé Sáenz-Galindo
  • Raúl Rodríguez-HerreraEmail author
Chapter

Abstract

Inulinases are the enzymes, widely used in the food industry, that hydrolyze β-2,1 glycosidic bonds present in polyfructans such as inulin, a storage polysaccharide in several plants, to produce glucose and fructose. These enzymes are successfully produced by fungi and attracted special attention due to their potential applications in improving syrup quality and reducing production costs compared to high-fructose corn syrup produced from the starch. Inulinase has been used to produce both fructose syrups, by hydrolysis of chicory or artichoke Jerusalem, and inulooligosaccharides (IOSs), which can be used as a soluble food fiber, sweeteners, or prebiotics to increase the population of bifidobacteria in the intestine. In this chapter, the importance of inulinases in the food industry along with their mode of action and product formation is discussed.

Keywords

Inulinase Fungi Oligosaccharides Prebiotics Food industry 

Notes

Acknowledgments

This study was financially supported by the State Council for Science and Technology (COECyT) – Government of the State of Coahuila, through the project COAH-2017-C12-C78.

References

  1. Aidoo RP, Afoakwa EO, Dewettinck K (2014) Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture – rheological, microstructure and physical quality characteristics. J Food Eng 126:35–42CrossRefGoogle Scholar
  2. Altunbaş C, Uygun M, Uygun DA, Akgöl S, Denizli A (2013) Immobilization of inulinase on concanavalin A-attached super macroporous cryogel for production of high-fructose syrup. Appl Biochem Biotechnol 170:1909–1921CrossRefGoogle Scholar
  3. Alvarez MD, Fernández C, Solas MT, Canet W (2011) Viscoelasticity and microstructure of inulin-enriched mashed potatoes: influence of freezing and cryoprotectants. J Food Eng 102:66–76CrossRefGoogle Scholar
  4. Anes J, Fernandes P (2014) Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles. Biocatal Agric Biotechnol 3:296–302.  https://doi.org/10.1016/j.bcab.2013.11.006 CrossRefGoogle Scholar
  5. Angel SJ, Kavitha C, Vidyadharani G, Roy P, Dhanapani R (2012) Isolation of inulinase producing bacteria from sugarcane soil. Int J Appl Biol Pharm Technol 3(4):320–326Google Scholar
  6. Apolinário AC, de Lima Damasceno BPG, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 101(2014):368CrossRefGoogle Scholar
  7. Arjomanda MR, Gholamreza A, Habibi-Rezaeia M, Hassanzadeh M, Karkhane AA, Moosavi-Movahedie AA, Amanlouda M (2017) The importance of the non-active site and non-periodical structure located histidine residue respect to the structure and function of exo-inulinase. Int J Biol Macromol 98:542–549CrossRefGoogle Scholar
  8. Baghdasaryan GY, Baghdasaryan YG (2014) Inulin content in different plants and obtaining endoinulase enzyme from dandelion. Biol J Armen 4(66):80–84Google Scholar
  9. Bergkamp RJ, Bootsman TC, Toschka HY, Mooren AT, Kox L, Verbakel JM, Geerse RH, Planta RJ (1993) Expression of an alpha-galactosidase gene under control of the homologous inulinase promoter in Kluyveromyces marxianus. Appl Microbiol Biotechnol 40:309–317CrossRefGoogle Scholar
  10. Carniti P, Beltrame PL, Guardione D, Focher B, Marzetti A (1991) Hydrolysis of inulin: a kinetic study of the reaction catalyzed by an inulinase from Aspergillus ficuum. Biotechnol Bioeng 37:575–579CrossRefGoogle Scholar
  11. Carpita NC, Kanabus J, Housley TL (1989) Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinacea leaves. J Plant Physiol 134:162–168CrossRefGoogle Scholar
  12. Castillo CA, Maggi RC (2010) Inulinase production by yeast Kluyveromyces marxianus. Scientia Agropecuaria 1:235–245CrossRefGoogle Scholar
  13. Chen X-M, Xu X-M, Jin Z-Y, Chen H-Q (2012) Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carbohydr Polym 88:748–753.  https://doi.org/10.1016/j.carbpol.2012.01.036 CrossRefGoogle Scholar
  14. Chen X-M, Xu X-M, Jin Z-Y, Chen H-Q (2013) Expression of an exoinulinase gene from Aspergillus ficuum in Escherichia coli and its characterization. Carbohydr Polym 92:1984–1990.  https://doi.org/10.1016/j.carbpol.2012.11.087 CrossRefPubMedGoogle Scholar
  15. Chen M, Lei X, Chen C, Zhang S, Xie J, Wei D (2015) Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus CL1 for production of inulo-oligosaccharides. Appl Biochem Biotechnol 175:1153–1167.  https://doi.org/10.1007/s12010-014-1296-1 CrossRefPubMedGoogle Scholar
  16. Chesini M, Neila LP, Parra DF, Rojas NL, Contreras Esquivel JC, Cavalitto SF, Ghiringhelli PD, Hours RA (2013) Aspergillus kawachii produces an inulinase in cultures with yacon (Smallanthus sonchifolius) as substrate. Electron J Biotechnol 16(3):8.  https://doi.org/10.2225/vol16-issue3-fulltext-13 CrossRefGoogle Scholar
  17. Chi Z, Chi Z, Zhang T, Liu G, Li J, Wang X (2009a) Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnol Adv 27:236–255.  https://doi.org/10.1016/j.biotechadv.2009.01.002 CrossRefPubMedGoogle Scholar
  18. Chi Z, Zhang T, Liu G, Yue L (2009b) Inulinase-expression microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211–220CrossRefGoogle Scholar
  19. Dan A, Ghosh S, Moulik SP (2009) Physicochemical studies on the biopolymer inulin: a critical evaluation of its self-aggregation, aggregate-morphology, interaction with water, and thermal stability. Biopolymers 91:687–699.  https://doi.org/10.1002/bip.21199 CrossRefPubMedGoogle Scholar
  20. Danial EN, Awad GE, Elnashar MM (2010) Immobilized Inulinase on Grafted Alginate Beads Prepared by the One-Step and the Two-Steps Methods. Ind Eng Chem Res 49:3120–3125CrossRefGoogle Scholar
  21. Danial ENA, Najla OA, Alnahdi HSO (2015) Production of inulinase by free and immobilized cells of Penicillium funiculosum p 36. Braz Arch Biol Technol 58(4):636–642.  https://doi.org/10.1590/S1516-8913201500167 CrossRefGoogle Scholar
  22. Dilipkumar M, Rajamohan N, Rajasimman M (2013) Inulinase production in a packed bed reactor by solid state fermentation. Carbohydr Polym 96:196–199.  https://doi.org/10.1016/j.carbpol.2013.03.078 CrossRefPubMedGoogle Scholar
  23. El-souod SMA, Mohamed TM, Ali EMM, El-badry MO, El-keiy MM (2014) Partial purification of extracellular exo-inulinase from Ulocladium atrum. J Genet Eng Biotechnol 12(1:15–20.  https://doi.org/10.1016/j.jgeb.2014.04.001 CrossRefGoogle Scholar
  24. Fawzi EM (2011) Comparative study of two purified inulinases from thermophile Thielavia terrestris NRRL 8126 and mesophile Aspergillus foetidus NRRL 337 grown on Cichorium intybus l. Braz J Microbiol 42(2):633–649.  https://doi.org/10.1590/S1517-838220110002000028 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferreira MSS, De-Andrade AVM, Kennedy JF (1991) Properties of a thermostable nonspecific fructofuranosidase produced by Cladosporium cladosporioides cells for hydrolysis of Jerusalem artichoke extract. Appl Biochem Biotechnol 31:1–10CrossRefGoogle Scholar
  26. Flores AC, Morlett JA, Aguilar CN, Rodríguez HR (2012) Inulinase production by a Mexican semi-desert xerophylic Penicillium citrinum strain under submerged culture. Adv J Food Sci Technol 4(1):46–50Google Scholar
  27. Flores AC, Morlett JA, Rodríguez R (2015) Inulin potential for enzymatic obtaining of prebiotic oligosaccharides. Crit Rev Food Sci Nutr 56:1893.  https://doi.org/10.1080/10408398.2013.807220 CrossRefGoogle Scholar
  28. Flores-Gallegos AC, Contreras-Esquivel JC, Morlett-Chavez JA, Aguilar CN, Rodriguez-Herrera R (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119:421–426CrossRefGoogle Scholar
  29. Gao L, Zhenming C, Sheng J, Wang L, Li J, Gong F (2007) Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microbiol Ecol 54:722–729CrossRefGoogle Scholar
  30. Ghosh AK, Sengupta S (1982) Production of extracellular carbohydrases by mushroom. Acta Mycol 18(1):113–118CrossRefGoogle Scholar
  31. Gibson R, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarland S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Winjkoop IW, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Food 7:1–19CrossRefGoogle Scholar
  32. Gill PK, Manhas RK, Singh J, Singh P (2004) Purification and characterization of an exoinulinase from Aspergillus fumigatus. Appl Biochem Biotechnol 117:19–32CrossRefGoogle Scholar
  33. Golunski S, Silva MF, Marques CT, Rosseto V, Kaizer RR, Mossi AJ, Rigo D, Dallago RM, Luccio MD, Treichel H (2017) Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. An Acad Bras Cienc 89(1):57–63CrossRefGoogle Scholar
  34. Gong F, Zhang T, Chi Z, Sheng J, LI J (2008) Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnol Bioprocess Eng 13:533–539CrossRefGoogle Scholar
  35. Gupta AK, Kaur M, Kaur N, Singh R (1992) A comparison of properties of inulinase of Fusarium oxysporum immobilized on various supports. J Chem Tech Biotechnol 53:293–296CrossRefGoogle Scholar
  36. Gupta AK, Rathore P, Kaur N, Singh R (2007) Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum. J Chem Technol Biotechnol 47:245–257.  https://doi.org/10.1002/jctb.280470306 CrossRefGoogle Scholar
  37. He M, Wu D, Wu J, Chen J (2014) Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. J Ind Microbiol Biotechnol 41:105–114.  https://doi.org/10.1007/s10295-013-1341-z CrossRefPubMedGoogle Scholar
  38. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316CrossRefGoogle Scholar
  39. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(Pt 3):781–788CrossRefGoogle Scholar
  40. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696CrossRefGoogle Scholar
  41. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644CrossRefGoogle Scholar
  42. Jain SC, Jain PC, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using Dahlia tuber extract. Braz J Microbiol 43:62–69.  https://doi.org/10.1590/S1517-83822012000100007 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kalra K, Kumari R (2017) Isolation and production of inulinase from banana peel by using Aspergillus niger under submerged fermentation. Int J Sci Res Publ 7(3):454–461Google Scholar
  44. Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473.  https://doi.org/10.1016/j.jfoodeng.2007.08.006 CrossRefGoogle Scholar
  45. Karimi R, Azizib MH, Ghasemlouc M, Vaziri M (2015) Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohyd Polym 119:85–100CrossRefGoogle Scholar
  46. Karimi M, Habibi-Rezaei M, Rezaei K, Moosavi-Movahedi AA, Kokini J (2016) Immobilization of inulinase from Aspergillus niger on octadecyl substituted nanoporous silica: inulin hydrolysis in a continuous mode operation. Biocatal Agric Biotechnol 7:174–180.  https://doi.org/10.1016/j.bcab.2016.06.001 CrossRefGoogle Scholar
  47. Kim KY, Nascimento AS, Golubev AM, Polikarpov I, Kim CS, Kang SI, Kim SI (2008) Catalytic mechanism of inulinase from Arthrobacter sp. S37. Biochem Biophys Res Commun 371:600–605.  https://doi.org/10.1016/j.bbrc.2008.03.126 CrossRefPubMedGoogle Scholar
  48. Kolida S, Gibson GR (2007) Prebiotic capacity of inulin-type fructans. J Nutr 137:2503S–2506SCrossRefGoogle Scholar
  49. Laloux O, Cassart JP, Delcour J, Van Beeumen J, Vandenhaute J (1991) Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Lett 289:64–68CrossRefGoogle Scholar
  50. Laowklom N, Chantanaphan R, Pinphanichakarn P (2012) Production, purification and characterization of inulinase from a newly isolated Streptomyces sp. CP01. Nat Resour 3(3):137–144.  https://doi.org/10.4236/nr.2012.33018 CrossRefGoogle Scholar
  51. Liu GL, Fu GY, Chi Z, Chi Z (2014a) Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129.  https://doi.org/10.1007/s00253-014-6079-7 CrossRefPubMedGoogle Scholar
  52. Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM (2014b) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12(5):469–476CrossRefGoogle Scholar
  53. Menegas LZ, Pimentel TC, Garcia S, Prudencio SH (2013) Dry-fermented chicken sausage produced with inulin and corn oil: physicochemical, microbiological, and textural characteristics and acceptability during storage. Meat Sci 93:501–506CrossRefGoogle Scholar
  54. Mensinka MA, Frijlinka HW, van der Voort MK, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr Polym 130(2015):405–419CrossRefGoogle Scholar
  55. Mohamed SA, Salah HA, Moharam ME, Foda MS, Fahmy AS (2015) Characterization of two thermostable inulinases from Rhizopus oligosporus NRRL 2710. J Genet Eng Biotechnol 13:65–69.  https://doi.org/10.1016/j.jgeb.2014.12.001 CrossRefGoogle Scholar
  56. Moriyama S, Ohta K (2007) Functional characterization and evolutionary implication of the internal 157-amino-acid sequence of an exoinulinase from Penicillium sp. strain TN-88. J Biosci Bioeng 103:293.  https://doi.org/10.1263/jbb.103.293 CrossRefPubMedGoogle Scholar
  57. Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K (2002) Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Biosci Biotechnol Biochem 66:1887–1896CrossRefGoogle Scholar
  58. Moriyama S, Tanaka H, Uwataki M, Muguruma M, Ohta K (2003) Molecular cloning and characterization of an exoinulinase gene from Aspergillus niger strain 12 and its expression in Pichia pastoris. J Biosci Bioeng 96:324–331CrossRefGoogle Scholar
  59. Moshfegh AJ, Friday JE, Goldman JP, Chug-Ahuja JK (1999) Presence of inulin and oligofructose in the diets of Americans. J Nutr 29(7):1407S–1411SCrossRefGoogle Scholar
  60. Mutanda T, Mokoena MP, Olaniran AO, Wilhelmi BS, Whiteley BS, Whiteley CG (2014) Microbial enzymatic production and applications of short chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J Ind Microbiol Biotechnol 41:893–906CrossRefGoogle Scholar
  61. Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev AK, Polikarpov I (2004) Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol 344:471–480CrossRefGoogle Scholar
  62. Nakamura T, Kurokawa T, Nakatsu S, Ueda S (1978) Crystallization and general properties of an extracellular inulinase from Aspergillus sp. Nippon Nogeikagaku Kaishi 52:159–166CrossRefGoogle Scholar
  63. Nakamura T, Ogata Y, Shitara A, Nakamura A, Ohta K (1995) Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J Ferment Bioeng 80:164–169.  https://doi.org/10.1016/0922-338X(95)93213-4 CrossRefGoogle Scholar
  64. Nascimento DS, Valasques-Junior G, Fernandes P, Ribeiro GCA, Lima DM, Góes-Neto A, Oliveira RQ, Figueiredo-Ribeiro RCL, Assis SA (2012) Production, characterization and application of inulinase from fungal endophyte CCMB 328. An Acad Bras Ciênc 84(2):443.  https://doi.org/10.1590/S0001-37652012005000035 CrossRefPubMedGoogle Scholar
  65. Niness RK (1999) Inulin and oligofructose: what are they? J Nutr 29(7):1402S–1406SCrossRefGoogle Scholar
  66. Ohta K, Suetsugu N, Nakamura T (2002) Purification and properties of an extracellular inulinase from Rhizopus strain TN-96. J Biosci Bioeng 94:78–80CrossRefGoogle Scholar
  67. Ohta K, Akimoto H, Moriyama S (2004) Fungal inulinases: enzymology, molecular biology and biotechnology. J Appl Glycosci 51:247–254CrossRefGoogle Scholar
  68. Onodera S, Murakami T, Ito H, Mori H, Matsui H, Honma M, Chiba S, Shiomi N (1996) Molecular cloning and nucleotide sequences of cDNA and gene encoding endo-inulinase from Penicillium purpurogenum. Biosci Biotechnol Biochem 60:1780–1785CrossRefGoogle Scholar
  69. Ozen AE, Pons A, Tur JA (2012) Worldwide consumption of functional foods: a systematic review. Nutr Rev 70:472–481CrossRefGoogle Scholar
  70. Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases. Appl Biochem Biotechnol 81:35–52.  https://doi.org/10.1385/ABAB:81:1:35 CrossRefPubMedGoogle Scholar
  71. Patel S, Goyal A (2012) The current trends and future perspectives of prebiotics research: a review. 3 Biotech 2:115–125CrossRefGoogle Scholar
  72. Pessoni RAB, Braga MR, Figueiredo-Ribeiro RCL (2007) Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia 99(4):493–503.  https://doi.org/10.1080/15572536.2007.11832543 CrossRefPubMedGoogle Scholar
  73. Rawat H, Ganaie MA, Kango N (2015) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. Antonie Van Leeuwenhoek 107(3):799.  https://doi.org/10.1007/s10482-014-0373-3 CrossRefPubMedGoogle Scholar
  74. Ricca E, Calabró V, Curcio S, Dorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27:129–145CrossRefGoogle Scholar
  75. Roberfroid M (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87(Suppl 2):S139–S143CrossRefGoogle Scholar
  76. Rosa M, Fernandes S, Jiang B (2013) Fungal inulinases as potential enzymes for application in the food industry. Adv J Food Sci Technol 5(8):1031–1042CrossRefGoogle Scholar
  77. Rueangwatcharin U, Wichienchot S (2015) Development of functional canned and pouched tuna products added inulin for commercial production. J Food Sci Technol 52:5093–5101CrossRefGoogle Scholar
  78. Salvatore E, Pes M, Mazzarello V, Pirisi A (2014) Replacement of fat with long-chain inulin in a fresh cheese made from caprine milk. Int Dairy J 34:1–5CrossRefGoogle Scholar
  79. Sangeetha TP, Ramesh PN, Siddalingaiya P (2005) Maximization of fructooligosaccharide production by two stage continuous process and its scale up. J Food Eng 68(1):57–64.  https://doi.org/10.1016/j.jfoodeng.2004.05.022 CrossRefGoogle Scholar
  80. Sheng J, Chi Z, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144(2):111–121CrossRefGoogle Scholar
  81. Shreyas S, Yedahalli SS, Rehmann L, Amarjeet Bassi A (2016) Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization. Biotechnol Prog 32(3):629–637.  https://doi.org/10.1002/btpr.2238 CrossRefGoogle Scholar
  82. Singer JMD, Grinev M, Silva V, Cohen J, Singer P (2016) Safety and efficacy of coffee enriched with inulin and dextrin on satiety and hunger in normal volunteers. Nutrition 32:754–760CrossRefGoogle Scholar
  83. Singh P, Gill PK (2006) Production of Inulinases. Food Technol Biotechnol 44(2):151–162Google Scholar
  84. Singh RS, Chauhan K, Kennedy JF (2017) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322.  https://doi.org/10.1016/j.ijbiomac.2016.12.004 CrossRefPubMedGoogle Scholar
  85. Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World J Microbiol Biotechnol 23:543–552.  https://doi.org/10.1007/s11274-006-9258-6 CrossRefGoogle Scholar
  86. Skowronek M, Fiedurek J (2003) Selection of biochemical mutants of Aspergillus niger resistant to some abiotic stresses with increased inulinase production. J Appl Microbiol 95:686–692CrossRefGoogle Scholar
  87. Susilowati A, Hakiki M, Yati M, Aspiyanto K (2017) Recovery of fermented inulin fiber by lactic acid bacteria (LAB) from inulin hydrolysate using fungi inulinase enzymes of Scopulariopsis sp.-CBS1 and class of Deuteromycetes-CBS4 as cholesterol binder. AIP Conf Proc 1803(1):1.  https://doi.org/10.1063/1.4973168 CrossRefGoogle Scholar
  88. Trivedi S, Divecha J, Shah T, Shah A (2015) Rapid and efficient bioconversion of chicory inulin to fructose by immobilized thermostable inulinase from Aspergillus tubingensis CR16. Bioresour Bioprocess 2:32.  https://doi.org/10.1186/s40643-015-0060-x CrossRefGoogle Scholar
  89. Uhm TB, Chae KS, Lee DW, Kim HS, Cassart JP, Vandenhaute J (1998) Cloning and nucleotide sequence of the endoinulinase encoding gene, inu2, from Aspergillus ficuum. Biotechnol Lett 20:809–812CrossRefGoogle Scholar
  90. Van Loo J, Coussement P, De Leenheer L, Hoebregs H, Smits G (1995) On the presence of inulin and Oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35:525–552.  https://doi.org/10.1080/10408399509527714 CrossRefPubMedGoogle Scholar
  91. Varfolomeev SD, Uporov IV, Fedorov EV (2002) Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases. Biochemistry (Mosc) 67:1099–1108CrossRefGoogle Scholar
  92. Volkvo PV, Sinitsyna OA, Fedorova EA, Rojkova AM, Satrutdinov AD, Zorov IN, Okunev ON, Gusakov AV, Sinitsyn AP (2012) Isolation and properties of recombinant inulinases from Aspergillus sp. Biochemist 77:611–621Google Scholar
  93. Volpini-Rapina LF, Ruriko SF, Conti-Silva AC (2012) Sensory profile and preference mapping of orange cakes with addition of prebiotics inulin and oligofructose. LWT Food Sci Technol 48:37–42CrossRefGoogle Scholar
  94. Weijers CAGM, Franssen MCR, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26:436–456.  https://doi.org/10.1016/j.biotechadv.2008.05.001 CrossRefPubMedGoogle Scholar
  95. Wen T, Liu F, Huo K, Li Y-Y (2003) Cloning and analysis of the inulinase gene from Kluyveromyces cicerisporus CBS4857. World J Microbiol Biotechnol 19:423–426.  https://doi.org/10.1023/A:1023977028584 CrossRefGoogle Scholar
  96. Xiao R, Tanida M, Takao S (1988) Inulinase from Chrysosporium pannorum. J Ferment Technol 66(5):553–558CrossRefGoogle Scholar
  97. Yang J-K, Zhang J-W, Mao L, You X, Chen G-J (2016) Genetic modification and optimization of endo-inulinase for the enzymatic production of oligofructose from inulin. J Mol Catal B Enzym 134:225–232.  https://doi.org/10.1016/j.molcatb.2016.10.020 CrossRefGoogle Scholar
  98. Yépez Silva-Santisteban BO, Maugeri Filho F (2005) Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzym Microb Technol 36:717–724.  https://doi.org/10.1016/j.enzmictec.2004.12.008 CrossRefGoogle Scholar
  99. Yuan B, Hu N, Sun J, Wang S, Li F (2012) Purificatión and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. Nov. KRF1T. Appl Microbiol Biotechnol 96:1517–1526CrossRefGoogle Scholar
  100. Zhang L, Ohta Y, Wang Y (2003) Expression of the inulinase gene from Aspergillus niger in Pichia pastoris. Process Biochem 38:1209–1212CrossRefGoogle Scholar
  101. Zhang L, Zhao C, Zhu D, Ohta Y, Wang Y (2004) Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Exp Purif 35:272–275.  https://doi.org/10.1016/j.pep.2004.02.015 CrossRefGoogle Scholar
  102. Zherebtsov NA, Shelamova SA, Abramova IN (2002) Biosynthesis of Inulinases by Bacillus bacteria. Appl Biochem Microbiol 38(6):544–548.  https://doi.org/10.1023/A:1020722510374 CrossRefGoogle Scholar
  103. Zittan L (1981) Enzymatic hydrolysis of inulin-an alternative way to fructose production. Starch 33:373–377CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Adriana C. Flores-Gallegos
    • 1
  • Fabiola Veana
    • 2
  • Silvia M. González-Herrera
    • 3
  • Diana B. Muñiz-Márquez
    • 2
  • Aidé Sáenz-Galindo
    • 1
  • Raúl Rodríguez-Herrera
    • 1
    Email author
  1. 1.School of ChemistryUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de MéxicoCiudad VallesMexico
  3. 3.Instituto Tecnológico de Durango, Tecnológico Nacional de MéxicoDurangoMexico

Personalised recommendations