Advertisement

Cold-Active Enzymes in Food Processing

  • Burhan Hamid
  • Fayaz A. Mohiddin
Chapter

Abstract

Microorganisms living in extreme environmental conditions (extremophiles) are potential source of extremozymes; they possess utmost stability under extreme environmental conditions. Cold-active enzymes are extremozymes produced by the psychrophiles (extremophiles) and have attracted much attention as biocatalysts due to their capacity to resist unfavourable reaction conditions in the industrial process. Cold-active enzymes possess wide applications in the food industry; these enzymes are not only secreted by bacteria but also from yeasts and moulds. Although enzymes are derived from plant and animal sources, cold-active microbial enzymes have taken advantage, due to their productivity and thermostability. Psychrophilic microorganisms produce a wide range of cold-active enzymes with immune application in food processing. The use of ß-galactosidase for the removal of lactose from refrigerated milk, application of pectinase for the reduction of viscosity and turbidity in chilled juice and use of amylase for hydrolysis of polysaccharides in starch processing industries and processing of meat with the help of cold-active proteases are the representative examples of application of cold-active enzymes. Cold-active enzymes possess exceptional molecular flexibility that has opened up newer areas of applications. In food processing industries, cold-active pectinases have been used for the removal of pectin which is important in fruit juice and wine processing, coffee and tea processing and macerating of plants and vegetable tissue, for degumming of plant fibres, for extracting vegetable oils and for adding poultry feed and in the alcoholic beverages. To fulfil the demand of industries, enzyme technology needs extension of biotechnological approach in terms of both quality and quantity. The potential of cold-active enzymes provides numerous opportunities for industrial applications. However, specific properties of cold-active enzymes may be improved and modified through enzyme engineering.

Keywords

Extremophiles Extremozymes Psychrophiles Cold-active enzymes Food processing 

References

  1. Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127–132PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adams MWW, Perler FB, Kelly RM (1995) Extremozymes: expanding the limits of biocatalysis. Biotechnology 13:662–668PubMedPubMedCentralGoogle Scholar
  3. Adapa V, Ramya LN, Pulicherla KK, Rao KR (2014) Cold active pectinases: advancing the food industry to the next generation. Appl Biochem Biotechnol 172:2324–2337PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem (London) 33:21–28CrossRefGoogle Scholar
  6. Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M (2002) The cold-active lipase of Pseudomonas fragi: heterologous expression, biochemical characterization and molecular modeling. Eur J Biochem 269:3321–3328PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aoyama S, Yoshida N, Inouye S (1988) Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO-12049 in E. coli. FEBS Lett 242:36–40PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aurilia V, Parracino A, D’Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bakermans C, Skidmore ML (2011) Microbial metabolism in ice and brine at −5 degrees C. Environ Microbiol 13:2269–2278PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baracat MC, Vanetti MCD, Araujo EF, Silva DO (1991) Growth conditions of a pectinolytic Aspergillus fumigatus for degumming of natural fibres. Biotechnol Lett 13:693–696CrossRefGoogle Scholar
  11. Białkowska A, Cieslin’ski H, Nowakowska K, Kur J, Turkiewicz M (2009) A new β-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol 191:825–835PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bonnin E (2003) Mode of action of Fusarium moniliforme endopolygalacturonase towards acetylated pectin. Carbohydr Polym, Amsterdam 52:381–388CrossRefGoogle Scholar
  13. Borchert TV, Svendsen A, Andersen C, Nielsen B, Nissem TL, Kjaerulff S (2004) Exhibit alterations in at least one of the following properties relative to parent alpha-amylase: improved pH stability at pH 8–10.5, improved calcium ion stability at pH 8–10.5, increased specific activity at 10–60°C. US Patent No 6673589 B2Google Scholar
  14. Braga AA, De Morais PB, Linrdi VR (1998) Screening of yeasts from Brazilian Amazon rain forest for extracellular proteinases production. Syst Appl Microbiol 21:353–359PubMedCrossRefPubMedCentralGoogle Scholar
  15. Buisman GJH, Helteren CTW, Kramer GFH, Veldsink JW, Derksen JTP, Cuperus FP (1998) Enzymatic esterifications of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 20:131–136CrossRefGoogle Scholar
  16. Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38:1397–1403CrossRefGoogle Scholar
  17. Bury D, Jelen P, Kalab M (2001) Disruption of Lactobacillus delbrueckii sp. Bulgaricus 11842 cells of lactose hydrolysis in dairy products: a comparison of sonication, high pressure homogenization and bead milling. Innovative Food Sci Emerg Technol 2(1):23–29CrossRefGoogle Scholar
  18. Carrara CR, Rubiolo AC (1994) Immobilization of β-galactosidase on chitosan. Biotechnol Prog 10(2):220–224CrossRefGoogle Scholar
  19. Cavicchioli R, Siddiqui KS (2004) Cold adapted enzymes. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asiatech Publishers, New Delhi, pp 615–638Google Scholar
  20. Cavicchioli R, Thomas T (2000) Extremophiles. In: Lederberg J, Alexander M, Bloom BR et al (eds) Encylopedia of microbiology, 2nd edn. Academic, San Diego, pp 317–337Google Scholar
  21. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen S, Kaufman MG, Miazgowicz KL et al (2013) Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour Technol 128:145–155PubMedCrossRefPubMedCentralGoogle Scholar
  23. Coker J, Peter P, Loveland J, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482PubMedPubMedCentralCrossRefGoogle Scholar
  24. Collins T, Meuwis MA, Stals I et al (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139PubMedCrossRefPubMedCentralGoogle Scholar
  25. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23PubMedCrossRefGoogle Scholar
  26. Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. Meth Enzymol 161:329–335CrossRefGoogle Scholar
  27. Cowan DA, Casanueva A, Stafford W (2007) Ecology and biodiversity of cold-adapted microorganisms. In: Physiology and biochemistry of extremophiles. American Society of Microbiology, Washington, DCGoogle Scholar
  28. D’Amico S, Marx J-C et al (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278(10):7891–7896PubMedCrossRefPubMedCentralGoogle Scholar
  29. D’Amico S, Collins T, Marx JC et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782PubMedCrossRefPubMedCentralGoogle Scholar
  31. De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517PubMedPubMedCentralCrossRefGoogle Scholar
  32. Del-Cid A, Ubilla P, Ravanal MC et al (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172:524–532PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dewan SS (2014) Global markets for enzymes in industrial applications. BCC Research, WellesleyGoogle Scholar
  35. Dieckelmann M, Johnson LA, Beacham IR (1998) The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J Appl Microbiol 85:527–536PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dornez E, Verjans P, Arnaut F, Delcour JA, Courtin CM (2011) Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem 59:9553–9562PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fadel M (2000) Production of thermostable amyletic enzymes by A. niger F-909 under SSF. Egypt J Microbiol 35:487–505Google Scholar
  38. Farrell J, Rose AH (1967) Temperature effects on microorganisms. In: Rose AH (ed) Thermobiology. Academic, London, pp 147–218Google Scholar
  39. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:512840Google Scholar
  40. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  41. Feller G, Narinx E, Arpigny JL et al (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202CrossRefGoogle Scholar
  42. Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant α-amylase. Appl Environ Microbiol 64:1163–1165PubMedPubMedCentralGoogle Scholar
  43. Fernandez S, Geueke B, Delgado O (2002) β-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321CrossRefGoogle Scholar
  44. Georlette D, Blaise V, Collins T et al (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42PubMedCrossRefGoogle Scholar
  45. Gerday C, Aittaleb M, Bentahir M et al (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107PubMedCrossRefGoogle Scholar
  46. Ghosh M, Pulicherla KK, Rekha VP et al (2012) Cold active beta-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 28:2859–2869PubMedCrossRefGoogle Scholar
  47. Goodchild A, Saunders NFW, Ertan H et al (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321PubMedCrossRefGoogle Scholar
  48. Gounot AM (1991) Bacterial Life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71:386–397PubMedCrossRefGoogle Scholar
  49. Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases: a review. Process Biochem, Barking 38:987–996CrossRefGoogle Scholar
  50. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34PubMedCrossRefGoogle Scholar
  51. Hamid B (2016) Cold-active α-amylase from psychrophilic and psychrotolerant yeasts. J Global Biosci 7:2670–2677Google Scholar
  52. Hamid B, Singh P, Mohiddin FA et al (2013) Partial characterization of cold-active β-galactosidase activity produced by Cystophallobaidium capatitum SPY11 and Rodotorell amusloganosa PT1. J Endocytobiosis Cell Res 24:23–26Google Scholar
  53. Hamid B, Ravinder SR, Deepak C et al (2014) Psychrophilic yeasts and their biotechnological applications – a review. Afr J Biotechnol 13(22):2188–2197CrossRefGoogle Scholar
  54. Haseltine C, Rolfsmeier M, Blum P (1996) The glucose effect and regulation of amylase synthesis in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 178:945–950PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hatti-Kaul R, Birgisson HO, Mattiasson B (2006) Cold active enzymes in food processing. In: Shetty K, Paliyath G, Pometto A, Levin RE (eds) Food Biotechnology, 2nd edn. CRC, Taylor & Francis, Boca Raton, pp 1631–1653Google Scholar
  56. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria-occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561PubMedGoogle Scholar
  57. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  58. Hough DW, Danson MJ (1999). Extremozymes) Curr Opin Chem Biol 3:39–46PubMedCrossRefGoogle Scholar
  59. Hoyoux A, Jennes I, Gerday C (2001) Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jaeger and Eggert (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397PubMedCrossRefGoogle Scholar
  61. Horner TW, Dunn ML, Eggett DL, Ogden LV (2011) Beta-galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. J Dairy Sci 94:3242–3249PubMedCrossRefPubMedCentralGoogle Scholar
  62. Joseph B (2006) Isolation, purification and characterization of cold adapted extracellular lipases from psychrotrophic bacteria: feasibility as laundry detergent additive. Ph.D thesis, Allahabad Agricultural Institute Deemed University, IndiaGoogle Scholar
  63. Kuddus M, Ramteke PW (2008) Purification and properties of cold-active metallo protease from Curtobacterium luteum and effect of culture conditions on production. Chin J Biotechnol 24:2074–2080Google Scholar
  64. Kuddus M, Saima R, Ahmad IZ (2012) Cold-active extracellular α-amylase production from novel bacteria microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier, Western Himalaya. J Genet Eng Biotechnol 10:151–159CrossRefGoogle Scholar
  65. Kunamneni A, Plou FJ, Ballesteros A et al (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24PubMedCrossRefGoogle Scholar
  66. Lambo A, Patel T (2006) Cometabolic degradation of polychlorinated biphenyls at low temperature by psychrotolerant bacterium Hydrogenophaga sp. IA3-A. Curr Microbiol 53(1):48–52PubMedCrossRefGoogle Scholar
  67. MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75CrossRefGoogle Scholar
  68. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276:66–71CrossRefGoogle Scholar
  69. Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14CrossRefGoogle Scholar
  70. Margesin R, Feller G, Gerday C et al (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885Google Scholar
  71. Mateo C, Monti R, Pessela BC et al (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 20:1259–1262PubMedCrossRefPubMedCentralGoogle Scholar
  72. Morita RY (1966) Marine psychrophilic bacteria oceanoger. Mar Biol Ann Rev 4:105–121Google Scholar
  73. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralGoogle Scholar
  74. Mykytczuk NC, Foote SJ, Omelon CR et al (2013) Bacterial growth at -15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:1211–1226PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nakagawa T, Yamada K, Miyaji T, Tomizuka N (2002) Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. J Biosci Bioeng 94:175–177PubMedCrossRefGoogle Scholar
  76. Nakagawa T, Fujimoto Y, Uchino M et al (2003) Isolation and characterization of psychrophiles producing cold-active β-galactosidase. Lett Appl Microbiol 37:154–157PubMedCrossRefGoogle Scholar
  77. Nakagawa T, Nagaoka T, Taniguchi S et al (2004) Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Lett Appl Microbiol 38:383–387PubMedCrossRefGoogle Scholar
  78. Nakagawa T, Ikehata R, Uchino M (2006a) Cold-active β-galactosidase activity of isolated psychrophilic basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79PubMedCrossRefGoogle Scholar
  79. Nakagawa T, Fujimoto Y, Ikehata R (2006b) Purification and molecular characterization of cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. Appl Microbiol Biotechnol 72:720–725PubMedCrossRefGoogle Scholar
  80. Neklyudov AD, Ivankin AN, Berdutina AV (2000) Properties and uses of protein hydrolysates (review). Appl Biochem Microbiol 36:452–459CrossRefGoogle Scholar
  81. Pandey A, Nigam P, Soccol CR et al (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152PubMedCrossRefPubMedCentralGoogle Scholar
  82. Park JW, Oh YS, Lim JY et al (2006) Isolation and characterization of cold-adapted strains producing β-galactosidase. J Microbiol 44:396–402PubMedPubMedCentralGoogle Scholar
  83. Pilnik W, Rombouts FM (1985) Polysaccharides and food processing. Carbohydr Res 142:93–105PubMedCrossRefPubMedCentralGoogle Scholar
  84. Pivarnik LF, Senecal AG, Rand AG (1995) Hydrolytic and transgalactosylic activities of commercial beta-galactosidase (lactase) in food processing. Adv Food Nut Res 38:1–102CrossRefGoogle Scholar
  85. Pulicherla KK, Mrinmoy G, Kumar S et al (2011) Psychrozymes – the next generation industrial enzymes. J Mar Sci Res Dev 1:102CrossRefGoogle Scholar
  86. Pulicherla KK, Kumar PS, Manideep K, Rekha VP, Ghosh M, Sambasiva Rao KR (2013) Statistical approach for the enhanced production of cold-active beta-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of bay of Bengal. Prep Biochem Biotechnol 43:766–780PubMedCrossRefGoogle Scholar
  87. Qin Y, Huang Z, Liu Z (2014) A novel cold-active and salt-tolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18:271–281PubMedCrossRefPubMedCentralGoogle Scholar
  88. Reid I, Ricard M (2002) Pectinase in papermaking: solving retention problems in mechanical pulp bleached with hydrogen peroxide. Enzym Microb Technol 26:115–123CrossRefGoogle Scholar
  89. Rothschild LJ, Manicinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ruberto L, Vazquez S, Lobalbo A et al (2005) Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct Sci 17(1):47–56CrossRefGoogle Scholar
  91. Russell NJ (2000) Towards a molecular understanding of cold activity of enzymes from psychrophiles. Extreamophiles 4:83–90CrossRefGoogle Scholar
  92. Russell NJ, Hamamoto T (1998) In: Horikoshi K, Grant WD (eds) Psychrophiles in extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 25–45Google Scholar
  93. Sabri A, Bare G, Jacques P (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276(16):12691–12696PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sahay S, Hamid B, Singh P et al (2013) Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts. Lett Appl Microbiol 5(2):115–121CrossRefGoogle Scholar
  95. Sakai T, Sakamoto T, Hallaert J et al (1993) Pectin, pectinase and protopectinase: production, properties, and applications. Adv Appl Microbiol 39:213–294PubMedCrossRefGoogle Scholar
  96. Schmidt NS (1902) Uebereinig epsychrophile Mikroorganismen und ihrVorkommen. Centr Bakteriol Parasitenk, Abt II 9:145–147Google Scholar
  97. Shukla TP, Wierzbicki LE (1975) β-galactosidase technology: a solution to the lactose problem. Food Sci Nutr 25:325–356Google Scholar
  98. Soares MMCN (2001) Pectinolytic enzyme production by Bacillus sp. and their potential application on juice extraction. World J Microbiol Biotechnol, Dordrecht 17:79–82CrossRefGoogle Scholar
  99. Speer E (1998) Milk and dairy product technology. Marcel Dekker, New YorkGoogle Scholar
  100. Stokes JL (1963) General biology and nomenclature of psychrophilic microorganisms. Recent progress in microbiology VIII. University of Toronto Press, Toronto, pp 187–192Google Scholar
  101. Suarez FL, Savaiano DA, Levitt MD (1995) Review article: the treatment of lactose intolerance. Aliment Pharmacol Ther 9(6):589–597PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tan S, Owusu ARK, Knapp J (1996) Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 57:415–418CrossRefGoogle Scholar
  103. Trindade RC, Resende MA, Silva CM et al (2002) Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Syst Appl Microbiol 25:294–300PubMedCrossRefPubMedCentralGoogle Scholar
  104. Truong LV, Tuyen H, Helmke E et al (2001) Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles 5:35–44PubMedCrossRefPubMedCentralGoogle Scholar
  105. Tutino ML, di Prisco G, Marino G et al (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16:1172–1180PubMedCrossRefPubMedCentralGoogle Scholar
  106. Tweedie LS, MacBean RD, Nickerson TA (1978) Present and potential uses for lactose and some lactose derivative. Food Technol Assoc Australia 30:57–62Google Scholar
  107. Ueda M, Goto T, Nakazawa M, Miyatake K et al (2010) A novel cold-adapted cellulase complex from Eisenia fetida: characterization of a multienzyme complex with carboxymethylcellulase, β-glucosidase, β-1,3glucanase, and β-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157:26–32PubMedCrossRefPubMedCentralGoogle Scholar
  108. Van den Burg B (2003) Extremophiles as a source for novel enzyme. Corr Opin Microbiol 6:213–218CrossRefGoogle Scholar
  109. Wang F, Hao J, Yang C, Sun M (2010) Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl Biochem Biotechnol 162:1497–1505PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ward OP (1985) Proteolytic enzymes. In: Moo-Young M (ed) Comprehensive biotechnology, the practice of biotechnology: current commodity products, vol 3. Pergamon Press, Oxford, pp 789–818Google Scholar
  111. Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14(3):281–291CrossRefGoogle Scholar
  112. Wang SY, Hu W, Lin XY, Wu ZH, Li YZ (2012) A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 93:1503–1512PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Burhan Hamid
    • 1
  • Fayaz A. Mohiddin
    • 2
  1. 1.Biofertilizer Research LaboratorySKUAST-KWaduraIndia
  2. 2.Division of Plant PathologySKUAST-KShalimarIndia

Personalised recommendations