Advertisement

Technology Prospecting on Microbial Enzymes: Engineering and Application in Food Industry

  • Gauri Singhal
  • Anju Meshram
  • Sameer Suresh Bhagyawant
  • Nidhi Srivastava
Chapter

Abstract

Enzymes, also known as biological catalyst, are wondrous natural chemicals, produced by all living organisms. Commercial production of enzymes and their uses are major part of biotechnology industry. Industrialists’ choice to enhance enzyme’s catalytic property through modified raw materials under different mild conditions, applicable for food technology, is under progress. The applications of enzymes are growing rapidly in various industries due to their nontoxic, eco-friendly characteristics, reduced processing time and cost-effectiveness. Microorganisms are the most important and suitable source for the commercial enzymes. In addition, it is easy to produce and redesign the desired enzymes through microorganism’s manipulation by the advance tool of genetic engineering. Industrially applicable enzymes, i.e. α-amylase, β-amylase, glucose isomerase, pullulanase, cellulase, catalase, lactase, pectinases, pectin lyase, invertase, raffinose, microbial lipases, proteases, etc., have been successfully produced by various microorganisms including fungi, bacteria and yeasts. In food processing, most of the commercially available microbial enzymes have been derived from the strains of yellow-green Aspergillus, black Aspergillus, Bacillus subtilis, yeast, Rhizopus and Penicillium because of their ubiquitous nature. These could be well employed as source for the useful enzymes such as yeast for invertase or lactase, Rhizopus for amylase or glucoamylase and Penicillium for pectinase or lipase. In current scenario, there is an emerging demand for more advanced technologies for the maximum production and utilization of industrially important microbial enzymes.

Keywords

Fungi Bacteria Enzymes Food industry Endophytic microorganisms 

References

  1. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139Google Scholar
  2. Afroz QM, Khan AK, Ahmed P, Uprit S (2015) Enzymes used in dairy industries. Int J Appl Res 1(10):523–527Google Scholar
  3. Almeida C, Brányik T, Moradas-Ferreira P, Teixeira J (2005) Use of two different carriers in a packed bed reactor for endopolygalacturonase production by a yeast strain. Process Biochem 40:1937CrossRefGoogle Scholar
  4. Andreu P, Collar C, Martı’nez-Anaya MA (1999) Thermal properties of doughs formulated with enzymes and starters. Eur Food Res Technol 209:286–293CrossRefGoogle Scholar
  5. Antikainen NM, Martin SF (2005) Altering protein specificity: techniques and applications. Bioorg Med Chem 13(8):2701–2716PubMedCrossRefGoogle Scholar
  6. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  7. Arnold FH (1993) Engineering proteins for non-natural environments. FASEB J 7(9):744–749PubMedCrossRefGoogle Scholar
  8. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626PubMedCrossRefGoogle Scholar
  9. Bayer EA, Morag F, Lamed R (1994) The cellulosome— a treasure-trove for biotechnology. Trends Biotechnol 12(9):379–386PubMedCrossRefPubMedCentralGoogle Scholar
  10. Beigomi M (2014) Biochemical and rheological characterization of a protease from fruits of withania coagulans with a milk-clotting activity. Food Sci Biotechnol 23(6):1805–1813CrossRefGoogle Scholar
  11. Berka RM, Cherry JR (2006) Enzyme biotechnology basic biotechnology, 3rd edn. Cambridge University Press, Cambridge, pp 477–498CrossRefGoogle Scholar
  12. Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60(2):280–300PubMedPubMedCentralGoogle Scholar
  13. Bon EPS, Ferrara MA (2007) Bioethanol production via enzymatic hydrolysis. The role of agricultural biotechnologies for production of bioenergy in developing countries. In: The role of agricultural biotechnologies for production of bioenergy in developing countries. FAOGoogle Scholar
  14. Buisman GJH, Helteren CTW, Kramer GFH, Veldsink JW, Derksen JTP, Cuperus FP (1998) Enzymatic esterifications of functionalized phenols for the synthesis of lipophilic antioxidants. Biotechnol Lett 20:131–136CrossRefGoogle Scholar
  15. Burg VB (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218PubMedCrossRefPubMedCentralGoogle Scholar
  16. Butt MS, Nadeem MT, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46(1):22–31Google Scholar
  17. Carvalho LMJ, Deliza R, Silva CAB, Miranda RM, Maia MCA (2003) Identifying the adequate process conditions by consumers for pineapple juice using membrane technology. J Food Technol 1:150–156Google Scholar
  18. Chandra MS, Viswanath B, Reddy BR (2007) Cellulolytic enzymes on lingo-cellulosic substrates in solid state fermentation by Aspergillus niger. Indian J Microbiol 47:323–328PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chaplin M (2002) Production of syrups containing maltose. http://www.lsbu.ac.uk/biology/enztech/maltose.html
  20. Choudhury P, Bhunia B (2015) Industrial application of lipase: a review. Biopharm J 1(2):41–47Google Scholar
  21. Christopher N, Kumbalwar M (2015) Enzymes used in food industry a systematic review. Int J Innov Res Sci Eng Technol 4(10):9830–9836Google Scholar
  22. Cieslinski H, Kur J, Bialkowska A, Baran I, Makowski K, Turkiewicz M (2005) Cloning, expression, and purification of a recombinant cold-adapted b-galactosidase from antarctic bacterium Pseudoalteromonas sp. 22b. Protein Expr Purif 39:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  23. Coenen TMM, Aughton P, Verhagan H (1997) Safety evaluation of lipase derived from Rhizopus oryzae: summary of toxicological data. Food Chem Toxicol 35:315–322PubMedCrossRefPubMedCentralGoogle Scholar
  24. Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a beta-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482PubMedPubMedCentralCrossRefGoogle Scholar
  25. Collection of Information on Enzymes; Austrian Federal Evironment Agency: Vienna, Austria, 2002Google Scholar
  26. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry- a review. J Food Eng 76:291–302CrossRefGoogle Scholar
  27. Silva D, EG BMF, Medina C, Piccoli RH, Schwan RF (2005) FEMS Yeast Res 5:859PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dauter Z, Dauter M, Brzozowski AM et al (1999) X-ray structure of Novamyl, the five-domain ‘maltogenic’ a-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7 A ° resolution. Biochemistry 38:8385–8392PubMedCrossRefGoogle Scholar
  29. De Carvalho CC (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83PubMedCrossRefGoogle Scholar
  30. De Gregorio A, Mandalani G, Arena N, Nucita F, Tripodo MM, Lo Curto RB (2002) SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresour Technol 83(2):8994CrossRefGoogle Scholar
  31. Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102(10):6065–6072PubMedCrossRefPubMedCentralGoogle Scholar
  32. Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L (2006) Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J Food Process Eng 73:190–197CrossRefGoogle Scholar
  33. Dordick JS (2013) Biocatalysts for industry. In: Encyclopaedia of occupational health and safety (beverage industry). isbn:9781475745979Google Scholar
  34. Dupaigne (1974) The aroma of bananas. Fruits 30(12):783–789Google Scholar
  35. Faber K (1997) Biotransformations in organic chemistry: a textbook. Springer, BerlinCrossRefGoogle Scholar
  36. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  37. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Geniot S, Gerday C (1996) Enzymes from Psychrophilic organisms. FEMS Microbiol Rev 18:189–202CrossRefGoogle Scholar
  38. Fernandes S, Geueke B, Delgado O, Coleman J, Hatti-Kaul R (2002) Beta-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl Microbiol Biotechnol 58:313–321PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ghosh P, Saxena R, Gupta R, Yadav R, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–158PubMedGoogle Scholar
  40. Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 90:207–214PubMedCrossRefGoogle Scholar
  41. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003a) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  42. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003b) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  43. Heldman DR, Hartel RW (2007) Principles of food processing. Chapman & Hall, LondonGoogle Scholar
  44. Hernández MS, Rodríguez MR, Guerra NP, Rosés RP (2006) Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J Food Process Eng 73:93–100CrossRefGoogle Scholar
  45. Hess M (2008) Thermoacidophilic proteins for biofuels production. Trends Microbiol 16:414–419PubMedCrossRefGoogle Scholar
  46. Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Hindawi Publ Corpo Enzym Res 2013:921362Google Scholar
  47. Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10(4):358–364PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM et al (2001) Cold-adapted b-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trents Biotechnol 16:396–403CrossRefGoogle Scholar
  50. Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, Kim SJ, Lee JH (2009) Cloning and characterization of a new cold active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81:865–874PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jin B, van Leeuwen HJ, Patel B, Yu Q (1998) Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresour Technol 66:201–206CrossRefGoogle Scholar
  52. Joshi S, Satyanarayana T (2013) Biotechnology of cold-active proteases. Biology 2:755–783PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kandra L (2003) α -amylases of medical and industrial importance. J Mol Struct (Theochem) 666–667:487–498CrossRefGoogle Scholar
  54. Karasova-Lipovova P, Strnad H, Spiwok V, Mala S, Kralova B, Russell NJ (2003) The cloning, purification and characterisation of a cold-active b-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzym Microb Technol 33:836–844CrossRefGoogle Scholar
  55. Kaur G, Kumar S, Satyanarayama T (2004) Bioresour Technol 94:239PubMedCrossRefPubMedCentralGoogle Scholar
  56. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246PubMedCrossRefPubMedCentralGoogle Scholar
  57. Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98:150–157PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kuddus M, Roohi S, Ahmad IZ (2012) Cold-active extracellular a-amylase production from novel bacteria Microbacterium foliorum GA2 and Bacillus cereus GA6 isolated from Gangotri glacier, Western Himalaya. J Genet Eng Biotechnol 10:151–159CrossRefGoogle Scholar
  59. Kuhad RC, Singh A, Eriksson KE (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125PubMedPubMedCentralGoogle Scholar
  60. Kumar L, Awasthi G, Singh B (2011) Extremophiles: a novel source of industrially important enzymes. Biotechnology 10:1–15CrossRefGoogle Scholar
  61. Kuraishi C, Sakamoto J, Yamazaki K et al (1997) Production of restructured meat using microbial trans-glutaminase without salt or cooking. J Food Sci 62:488–490CrossRefGoogle Scholar
  62. Le Roes-Hill M, Prins A (2016) Biotechnological potential of oxidative enzymes from Actinobacteria. In: An introductory overview of Actinobacteria with three main divisions: taxonomic principles, bioprospecting, and agriculture and industrial utility. IntechOpenGoogle Scholar
  63. Leisola M, Jokela J, Pastinen O, Turunen O, Schoemaker H (2002) Industrial use of enzymes, encyclopedia of life support systems (EOLSS). EOLSS, OxfordGoogle Scholar
  64. Lima AS, Alegre RM, Meirelles AJA (2000) Carbohydr Polym 50:63CrossRefGoogle Scholar
  65. Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE (1994) Characterization of psychrotrophic microorganisms producing b-galactosidase activities. Appl Environ Microbiol 60:12–18PubMedPubMedCentralGoogle Scholar
  66. Loveland-Curtze J, Sheridan PP, Gutshall KR, Brenchley JE (1999) Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171:355–363PubMedCrossRefGoogle Scholar
  67. Maarel VMJ, Veen VB, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155PubMedCrossRefGoogle Scholar
  68. Margesin R, Schinner F (1994) Properties of cold adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14CrossRefGoogle Scholar
  69. Mendez C, Salas JA (2001) Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol 19:449–456PubMedCrossRefGoogle Scholar
  70. Monfort A, Blasco A, Sanz P et al (1999) Expression of LIP1 and LIP2 genes from Geotricum species in baker’s yeast strains and their application to the bread-making process. J Agric Food Chem 47:803–808PubMedCrossRefGoogle Scholar
  71. Monteiro CA, Levy RB (2010) A new classification of foods based on the extent and purpose of their processing. Public Health Nut 26(11):2039–2049Google Scholar
  72. Monteiro CA, Levy RB, Claro RM, Castro D, Cannon G (2011) Increasing consumption of ultra-processed foods and likely impact on human health. Public Health Nut 14(1):5–13CrossRefGoogle Scholar
  73. Moore MM, Heinbockel M, Dockery P, Ulmer MH, Arendt EK (2006) Network formation in gluten-free bread with application of transglutaminase. Cereal Chem 83:28–36CrossRefGoogle Scholar
  74. Nakagawa T, Fujimoto Y, Uchino M, Miyaji T, Takano K, Tomizuka N (2003) Isolation and characterization of psychrotrophs producing cold-active b-galactosidase. Lett Appl Microbiol 37:154–157PubMedCrossRefGoogle Scholar
  75. Ogawa J, Shimizu SI (2002) Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Curr Opin Biotechnol 13(4):367–375PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ohlsson T, Bengtsson N (2004) Minimal processing technologies in the food industry. CRC Press, Boca RatonGoogle Scholar
  77. Okanishi M, Suzuki N, Furita T (1996) Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Biosci Biotechnol Biochem 6:1233–1238CrossRefGoogle Scholar
  78. Olempska-Beer ZS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms – a review. Regul Toxicol Pharmcol 45:144–158CrossRefGoogle Scholar
  79. Pandey A, Benjamin S, Soccol CR, Nigam P, Kriger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotech Appl Biochem 29:119–113Google Scholar
  80. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limit of life. Crit Rev Microbiol 33:183–209PubMedCrossRefGoogle Scholar
  82. Pretel MT (1997) Pectic enzymes in fresh fruit processing: optimization of enzymic peeling of oranges. Process Biochem 32(1):43–49CrossRefGoogle Scholar
  83. Rajagopalan G, Krishnan C (2008) Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99:3044–3050PubMedCrossRefGoogle Scholar
  84. Ramteke PW, Bhatt MK (2007) Cold active polysaccridases and their potential industrial applications. Res Signpost 37(2):661–673Google Scholar
  85. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998a) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635PubMedPubMedCentralGoogle Scholar
  86. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998b) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Bio Rev 62(3):597–635Google Scholar
  87. Ray RC, Rosell CM (2016) Microbial enzyme technology in food applications. CRC Press, Boca RatonGoogle Scholar
  88. Reddy NS, Nimmagadda A, Rao KRS (2003) An overview of the microbial α-amylase family. Afr J Biotechnol 2:645–648CrossRefGoogle Scholar
  89. Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21PubMedPubMedCentralGoogle Scholar
  90. Schäfer T, Kirk O, Borchert TV (2002) Enzymes for technical applications biopolymers. Wiley, Weinheim, pp 377–437Google Scholar
  91. Shinde VB, Deshmukh SB, Bhoyar MG (2015) Applications of major enzymes in food industry. Indian Farmer 2(6):497–502Google Scholar
  92. Shukla A, Rana A, Kumar L, Singh B, Ghosh D (2009) Assessment of detergent activity of Streptococcus sp. AS02 protease isolated from soil of Sahastradhara, Doon Valley, Uttarakhand. Asian J Microbiol Biotechnol Environ Sci 11:587–591Google Scholar
  93. Singh A (1999) Engineering enzyme properties. Indian J Microbiol 39(2):65–77Google Scholar
  94. Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I. K. International Publishing House, New Delhi, pp 345–358Google Scholar
  95. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174PubMedPubMedCentralCrossRefGoogle Scholar
  96. Soccol CR, Vandenberghe LPS (2003) Overview of applied solid state fermentation in Brazil. Biochem Eng J 13:205–218CrossRefGoogle Scholar
  97. Sorensen JF, Krag KM, Sibbesen O, Delcur J, Goesaert H, Svensson B, Tahir TA, Brufau J, Perez-Vendrell AM, Bellincamp D, D’Ovidio R, Camardella L, Giovane A, Bonnin E, Juge N (2004) Biochim Biophys Acta 1696:27Google Scholar
  98. Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 41:850–861PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stead R (1986) Microbial lipases their characteristics, role in food spoilage & industrial uses. J Dairy Res 53:481–505PubMedCrossRefPubMedCentralGoogle Scholar
  100. Tan S, Owusu ARK, Knapp J (1996) Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 57:415–418CrossRefGoogle Scholar
  101. Tanyildizi MS, Ozer D, Elibol M (2005) Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40:2291–2296CrossRefGoogle Scholar
  102. Taragano VM, Pilosof AMR (1999) Enzym Microb Technol 25:411CrossRefGoogle Scholar
  103. Trimbur DE, Gutshall KR, Prema P, Brenchley JE (1994) Characterization of a psychrotrophic Arthrobacter gene and its cold-active beta-galactosidase. Appl Environ Microbiol 60:4544–4552PubMedPubMedCentralGoogle Scholar
  104. Turkiewicz M, Kur J, Bialkowska A, Cieslinski H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted b-galactosidase. Biomol Eng 20:317–324PubMedCrossRefGoogle Scholar
  105. Uma C, Gomathi D, Muthulakshmi C, Gopalakrishnan VK (2010) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res 4(1):31–36Google Scholar
  106. Vasic-Racki D, Liese A, Seelbach K, Wandrey C (2006) History of industrial biotransformations-dreams and realities, in industrial biotransformations, 2nd edn. Wiley, Weinheim, pp 1–35CrossRefGoogle Scholar
  107. World Enzymes (2011) Freedonia Group: ClevelandGoogle Scholar
  108. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gauri Singhal
    • 1
  • Anju Meshram
    • 1
  • Sameer Suresh Bhagyawant
    • 2
  • Nidhi Srivastava
    • 1
  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityJaipurIndia
  2. 2.School of Studies in BiotechnologyJiwaji UniversityGwaliorIndia

Personalised recommendations