Microbial Enzymes in Food Technology

  • Sushma Ahlawat
  • Manoj Kumawat
  • Piyoosh Kumar Babele


The application of microbial enzymes in food industries has attracted worldwide attention in the past and present era. Food processing industries utilized nearly about 29% of total produced enzymatic protein, and out of this 58% are obtained from fungi. Presently microbial enzymes are used in food, pharmaceutical, textile, paper, leather and other industrial process as a green alternative to traditional chemical methods. In this chapter, the source of different microbial enzymes and their applications in food sector will be highlighted. The chapter will also include various biotechnological tools used for the explorations of microbial enzymes in food processing.


Microbial enzymes Food technology Food processing Enzyme engineering 


  1. Adams A, Borrelli RC, Fogliano V et al (2005) Thermal degradation studies of food melanoidins. J Agric Food Chem 53(10):4136–4142CrossRefGoogle Scholar
  2. Aidaroos HI, Du G, Chen J (2011) Microbial fed-batch production of transglutaminase using ammonium sulphate and calcium chloride by Streptomyces hygroscopicus. Biotechnol Bioinformatics Bioeng 1(2):173–178Google Scholar
  3. Almeida MD, Pastore GM (2001) Galactooligossacarídeos–Produção e efeitos benéficos. Boletim da Sociedade Brasileira de Ciência e Tecnologia de Alimentos 35(1/2):12–19Google Scholar
  4. Blandino A, Dravillas K, Cantero D et al (2001) Utilisation of whole wheat flour for the production of extracellular pectinases by some fungal strains. Process Biochem 37(5):497–503CrossRefGoogle Scholar
  5. Bradoo S, Rathi P, Saxena R et al (2002) Microwave-assisted rapid characterization of lipase selectivities. J Biochem Biophys Meth 51(2):115–120CrossRefGoogle Scholar
  6. Cardoso MH, Jackix MN, Menezes HC et al (1998) Effect of association of pectinase, invertase and glucose isomerase on the quality of banana juice. J Food Sci Technol 18(3):275–282CrossRefGoogle Scholar
  7. Carminati D, Giraffa G, Quiberoni A, Binetti A, Suárez V, Reinheimer J (2010) Advances and trends in starter cultures for dairy fermentations. In: Biotechnology of lactic acid bacteria: Novel applications, p 177CrossRefGoogle Scholar
  8. Chandra MS, Viswanath B, Reddy BR (2007) Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Ind J Microbiol 47(4):323–328CrossRefGoogle Scholar
  9. Choi J-M, Han S-S, Kim H-S (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454CrossRefGoogle Scholar
  10. Christopher N, Kumbalwar M (2015) Enzymes used in food industry a systematic review. Int J Innov Res Sci Eng Technol 4(10):9830–9836Google Scholar
  11. De Gregorio A, Mandalari G, Arena N et al (2002) SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresour Technol 83(2):89–94CrossRefGoogle Scholar
  12. de Lima DAR, Da Silva TM, Maller A et al (2010) Purification and partial characterization of an exo-polygalacturonase from Paecilomyces variotii liquid cultures. Appl Biochem Biotechnol 160(5):1496–1507CrossRefGoogle Scholar
  13. Damian AL, Adria JL (2008) Contribution of microorganisms to industrial biology. Mol Biotechnol 38:41–53Google Scholar
  14. Dillon (2004) Aldo. Celulases. In: Said S, Pietro RCL (eds) Enzimas como agentes biotecnológicos. Ribeirão Preto, Legis Summa, pp 243–270Google Scholar
  15. Faergemand M, Qvist K (1997) Transglutaminase: effect on rheological properties, microstructure and permeability of set style acid skim milk gel. Food Hydrocoll 11(3):287–292CrossRefGoogle Scholar
  16. Falcone P, Serafini-Fracassini D, Del Duca S (1993) Comparative studies of transglutaminase activity and substrates in different organs of Helianthus tuberosus. J Plant Physiol 142(3):265–273CrossRefGoogle Scholar
  17. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8(1):17CrossRefGoogle Scholar
  18. Giosafatto C, Rigby N, Wellner N et al (2012) Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocoll 26(1):261–267CrossRefGoogle Scholar
  19. Green BD, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17(3):236–240CrossRefGoogle Scholar
  20. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377CrossRefGoogle Scholar
  21. Gujral HS, Rosell CM (2004) Functionality of rice flour modified with a microbial transglutaminase. J Cereal Sci 39(2):225–230CrossRefGoogle Scholar
  22. Hartley BS, Hanlon N, Jackson RJ et al (2000) Glucose isomerase: insights into protein engineering for increased thermostability. Biochim Biophys Acta 1543(2):294–335CrossRefGoogle Scholar
  23. Holsinger V, Rajkowski K, Stabel J (1997) Milk pasteurisation and safety: a brief history and update. Rev Sci Tech Oie 16(2):441–466CrossRefGoogle Scholar
  24. Imran M, Asad MJ, Hadri SH, Mehmood S (2012) Production and industrial applications of laccase enzyme. J Cell Mol Biol 10(1)Google Scholar
  25. Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403CrossRefGoogle Scholar
  26. Kashiwagi T, Yokoyama KI, Ishikawa K et al (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277(46):44252–44260CrossRefGoogle Scholar
  27. Kuraishi C, Sakamoto J, Soeda T (1997) Process for producing cheese using transglutaminase. Google PatentsGoogle Scholar
  28. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510CrossRefGoogle Scholar
  29. Lorenzen PC, Neve H, Mautner A et al (2002) Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int J Dairy Technol 55(3):152–157CrossRefGoogle Scholar
  30. Machado de Castro A, Pereira N Jr (2010) Production, properties and application of cellulases in the hydrolysis of agroindustrial residues. Quim Nova 33(1):181–188Google Scholar
  31. Mahmood WA, Sebo NH (2009) Effect of microbial transglutaminase treatment on soft cheese properties. Mesopotamia J of Agric 37Google Scholar
  32. Milichová Z, Rosenberg M (2006) Current trends of β-galactosidase application in food techonology. J Food Nutr Res 45(2):47–54Google Scholar
  33. Moore MM, Heinbockel M, Dockery P et al (2006) Network formation in gluten-free bread with application of transglutaminase. Cereal Chem 83(1):28–36CrossRefGoogle Scholar
  34. Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Universidade Federal de Lavras, Lavras, p 729Google Scholar
  35. Okafor U, Emezue N, Okochi V et al (2007) Xylanase production by Penicillium chrysogenum (PCL501) fermented on cellulosic wastes. Afr J Biochem Res 1(4):48–53Google Scholar
  36. Orberg L, Englehardt W (1981) Apparatus for locating therein a pipe union. Google PatentsGoogle Scholar
  37. Polizeli M, Rizzatti A, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591CrossRefGoogle Scholar
  38. Qureshi MS, Anila M, Shaista J (2015) Effect of age and lactation on milk fatty acid profile in dairy buffaloes. Buffalo Bull 34(3):275–283Google Scholar
  39. Rosana C, Minussi Y, Pastore GM, Durany N (2002) Potential applications of laccase in the food industry. Trends in Food Sci Technol 13:205–216CrossRefGoogle Scholar
  40. Shinde VB, Deshmukh SB, Bhoyar MG (2015) Applications of major enzymes in food industry. Indian Farmer 2(6):497–502Google Scholar
  41. Silva D, Tokuioshi K, da S, Martins E et al (2005) Production of pectinase by solid-state fermentation with Penicillium viridicatum RFC3. Process Biochem 40(8):2885–2889CrossRefGoogle Scholar
  42. Silva CR, Delatorre AB, Martins MLL (2007) Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp. and some properties of the enzymatic activity. Braz J Microbiol 38:253–258Google Scholar
  43. Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotech 28(3):111–116CrossRefGoogle Scholar
  44. Smith CA, Rangarajan M, Hartley BS (1991) D-xylose (D-glucose) isomerase from Arthrobacter strain NRRL B3728. Purification and properties. Biochem J 277(Pt 1):255CrossRefGoogle Scholar
  45. Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44(2):211Google Scholar
  46. Tucker, GA and Woods, LFJ (eds) 1995 Enzymes in food processing. Springer Science & Business MediaGoogle Scholar
  47. Uma C, Gomathi D, Muthulakshmi C et al (2010a) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res 4(1):31–36Google Scholar
  48. Uma C, Muthulakshmi C, Gomathi D et al (2010b) Production of ethanol from sugarcane bagasse. Res J Microbiol 5(10):980–985CrossRefGoogle Scholar
  49. Vasic-Racki D (2006) History of industrial biotransformations–dreams and realities. In: Industrial biotransformations, 2nd edn. Wiley, Weinheim, pp 1–36Google Scholar
  50. Walfridsson M, Bao X, Anderlund M et al (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651PubMedPubMedCentralGoogle Scholar
  51. Wiseman A, Woods LF (1979) Benzo (a) pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J Chem Technol Biotechnol 29(5):320–324CrossRefGoogle Scholar
  52. Wiseman A (ed) (1995) Handbook of Enzyme Biotechnology, 3rd edn. Ellis Horwood–Prentice Hall, Hemel Hempstead, UKGoogle Scholar
  53. Yasueda H, Kumazawa Y, Motoki M (1994) Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci Biotechnol Biochem 58(11):2041–2045CrossRefGoogle Scholar
  54. Yu Y-J, Wu S-C, Chan H-H et al (2008) Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Appl Microbiol Biotechnol 81(3):523CrossRefGoogle Scholar
  55. Zhang K, Ren N-Q, Cao G-L et al (2011) Biohydrogen production behavior of moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16 under different gas-phase conditions. Int J Hydrog Energy 36(21):14041–14048CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sushma Ahlawat
    • 1
  • Manoj Kumawat
    • 1
    • 2
  • Piyoosh Kumar Babele
    • 2
  1. 1.Department of Biochemistry and Biochemical EngineeringJacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
  2. 2.Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia

Personalised recommendations