Advertisement

Project CASSIA —Framework for Exhaustive and Large-Scale Social Simulation—

  • Itsuki Noda
  • Yohsuke Murase
  • Nobuyasu Ito
  • Kiyoshi Izumi
  • Hiromitsu Hattori
  • Tomio Kamada
  • Hideyuki Mizuta
  • Mikio Takeuchi
Chapter

Abstract

Project CASSIA (Comprehensive Architecture of Social Simulation for Inclusive Analysis) aimed to develop a framework to administer execution of large-scale multiagent simulations exhaustively to analyze socially interactive systems on high-performance computing infrastructures. The framework consists of two parts, MASS Planning Module and MASS Parallel Middleware. MASS Planning Module is a manager module conducts effective execution plans of simulations among massive possible conditions according to available computer resources. It consists of OACIS/CARAVAN and their intelligent modules. MASS Parallel Middleware is an execution middleware which provides functionality to realize distributed multiagent simulation on many-core computers. It is a collection of X10 libraries, scheduler, and XASDI, a platform to program multiagent simulations. The CASSIA framework was applied to various real applications in pedestrian, traffic, and economics simulation domains and provided practical results and suggestions for real-world problems. We also discussed road maps of social simulation and high-performance computing to attack real and huge issues on social systems. This discussion indicates the possibility of CASSIA framework and multiagent simulations to realize engineering environment to design and synthesize social systems like traffics, economy, and politics.

References

  1. 1.
    Asano, Y., Ito, N., Inaoka, H., Imai, T., Uchinane, T.: Traffic simulation of Kobe-City. In: Proceedings of the International Conference on Social Modeling and Simulation, Plus Econophysics Colloquium 2014, pp. 255–264. Springer, Cham (2014)Google Scholar
  2. 2.
    Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pp. 519–538. ACM, New York (2005). http://doi.acm.org/10.1145/1094811.1094852
  3. 3.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN VI Proceedings of the 6th International Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer Science, vol. 1917, pp. 849–858. Springer, Berlin/Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83 Google Scholar
  4. 4.
    Fujishima, D., Kamada, T., Torii, T., Izumi, K.: Overlapping communication and computation for large-scale artificial market simulation. In: Proceedings of 22nd International Symposium on Artificial Life and Robotics (AROB 2017), Beppu, pp. 708–713 (2017)Google Scholar
  5. 5.
    Kawakubo, S., Izumi, K., Yoshimura, S.: Analysis of an option market dynamics based on a heterogeneous agent model. Int. J. Intell. Syst. Acc. Financ. Manag. 21, 105–128 (2014).  https://doi.org/10.1002/isaf.1353 CrossRefGoogle Scholar
  6. 6.
    Kobayashi, K., Narisawa, R., Yasui, Y., Fujisawa, K.: Experimental analyses of the evacuation planning model using lexicographically quickest flow (in japanese). Trans. Oper. Res. Soc. Jpn. 59, 86–105 (2016).  https://doi.org/10.15807/torsj.59.86 CrossRefGoogle Scholar
  7. 7.
    Matsushima, H., Noda, I.: Analysis of trade-off in evacuation plan using evolutionarily exhaustive simulation. In: Proceedings of the 23rd International Symposium on Artificial Life and Robotics (AROB 23rd 2018), pp. OS15–4. International Society of Artificial Life and Robotics (2018)Google Scholar
  8. 8.
    Mizuta, H.: Large-scale distributed agent-based simulation for shopping mall and performance improvement with shadow agent projection. In: Chan, W.K.V., D’Ambrogio, A., Zacharewicz, G., Mustafee, N., Wainer, G., Page, E. (eds.) Proceedings of the 2017 Winter Simulation Conference, pp. 3925–3936. Institute of Electrical and Electronics Engineers, Inc., Piscataway (2017)Google Scholar
  9. 9.
    Mizuta, T., Izumi, K., Yagi, I., Yoshimura, S.: Design of financial market regulations against large price fluctuations using by artificial market simulations. J. Math. Financ. 3(2A), 15–22 (2013).  https://doi.org/10.4236/jmf.2013.32A003 CrossRefGoogle Scholar
  10. 10.
    Mizuta, T., Kosugi, S., Kusumoto, T., Matsumoto, W., Izumi, K.: Effects of dark pools on financial markets’ efficiency and price discovery function: an investigation by multi-agent simulations. Evol. Inst. Econ. Rev. 12(2), 375–394 (2015). https://doi.org/10.1007/s40844-015-0020-3 CrossRefGoogle Scholar
  11. 11.
    Mizuta, T., Kosugi, S., Kusumoto, T., Matsumoto, W., Izumi, K., Yagi, I., Yoshimura, S.: Effects of price regulations and dark pools on financial market stability: an investigation by multiagent simulations. Intell. Syst. Account. Financ. Manag. 23(1–2), 97–120. https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1374 CrossRefGoogle Scholar
  12. 12.
    Murase, Y., Uchitane, T., Ito, N.: A tool for parameter-space explorations. Phys. Proc. 57, 73–76 (2014)CrossRefGoogle Scholar
  13. 13.
    Noda, I., Ito, N., Izumi, K., Mizuta, H., Kamada, T., Hattori, H.: Roadmap and research issues of multiagent social simulation using high-performance computing. J. Comput. Soc. Sci. 1(1), 155–166 (2018)CrossRefGoogle Scholar
  14. 14.
    Nurdin, Y., Yuliana, D.K., Noda, I., Soeda, S., Yamashita, T.: Disaster evacuation simulation with multi-agent system approach using netmas for contingency planning (meulaboh case study). In: Proceedings of 5th Annual International Workshop & Expo on Sumatra Tsunami Disaster & Recovery 2010, AIWEST-2010 (2010)Google Scholar
  15. 15.
    Osogami, T., Imamichi, T., Mizuta, H., Suzumura, T., Ide, T.: Toward simulating entire cities with behavioral models of traffic. IBM J. Res. Dev. 57(5), 6–1 (2013)CrossRefGoogle Scholar
  16. 16.
    Osogami, T., Mizuta, H., Ide, T.: Identifying the optimal road closure with simulation. In: Proceedings of the 20th ITS World Congress Tokyo 2013 (2013)Google Scholar
  17. 17.
    Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language specification version 2.6.1 (2017). http://x10-lang.org/
  18. 18.
    Takeuchi, M., Mizuta, H.: X10: performance and productivity at scale. In: Poster presentation at 20th Workshop on Programming and Programming Languages (2018)Google Scholar
  19. 19.
    Takeuchi, M., Makino, Y., Kawachiya, K., Horii, H., Suzumura, T., Suganuma, T., Onodera, T.: Compiling x10 to java. In: Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pp. 3:1–3:10. ACM, New York (2011). http://doi.acm.org/10.1145/2212736.2212739
  20. 20.
    Takeuchi, M., Cunningham, D., Grove, D., Saraswat, V.: Java interoperability in managed x10. In: Proceedings of the Third ACM SIGPLAN X10 Workshop, X10 ’13, pp. 39–46. ACM, New York (2013). http://doi.acm.org/10.1145/2481268.2481278
  21. 21.
    Torii, T., Izumi, K., Yamada, K.: Shock transfer by arbitrage trading: analysis using multi-asset artificial market. Evol. Inst. Econ. Rev. 12(2), 395–412 (2016)CrossRefGoogle Scholar
  22. 22.
    Torii, T., Kamada, T., Izumi, K., Yamada, K.: Platform design for large-scale artificial market simulation and preliminary evaluation on the k computer. Artif. Life Robot. 22(3), 301–307 (2017). https://doi.org/10.1007/s10015-017-0368-z CrossRefGoogle Scholar
  23. 23.
    Uchitane, T., Ito, N.: Applying factor analysis to describe urban scale vehicfle traffic simulation results (in Japanese). J. Soc. Instrum. Control Eng. 52(10), 545–554 (2016)Google Scholar
  24. 24.
    Yamashita, K., Kamada, T.: Introducing a multithread and multistage mechanism for the global load balancing library of x10. J. Inf. Process. 24(2), 416–424 (2016).  https://doi.org/10.2197/ipsjjip.24.416 Google Scholar
  25. 25.
    Yamashita, T., Soeda, S., Noda, I.: Evacuation planning assist system with network model-based pedestrian simulator. In: Yang, J.J., Yokoo, M., Takayuki Ito, Z.J., Scerri, P. (eds.) Principles of Practice in Multi-agent Systems. Proceedings of 12th International Conference, PRIMA 2009, pp. 649–656. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Yamashita, T., Soeda, S., Noda, I.: Assistance of evacuation planning with high-speed network model-based pedestrian simulator. In: Proceedings of Fifth International Conference on Pedestrian and Evacuation Dynamics (PED 2010), p. 58 (2010)Google Scholar
  27. 27.
    Yamashita, T., Soeda, S., Onishi, M., Noda, I.: Development and application of high-speed evacuation simulator with one-dimensional pedestrian model. J. Inf. Process. Soc. Jpn. 53(7), 1732–1744 (2012)Google Scholar
  28. 28.
    Yamashita, T., Okada, T., Noda, I.: Implementation of simulation environment for exhaustive analysis of huge-scale pedestrian flow. SICE JCMSI 6(2), 137–146 (2013)CrossRefGoogle Scholar
  29. 29.
    Yamashita, T., Matsushima, H., Noda, I.: Exhaustive analysis with a pedestrian simulation environment for assistant of evacuation planning. In: Prof. of PED 2014, pp. SE05–3 (2014). https://doi.org/https://doi.org/10.1016/j.trpro.2014.09.047 Google Scholar
  30. 30.
    Yonenoh, H., Izumi, K.: Destabilization effect of var-based risk management on a multiple-asset market: an artificial market approach. In: 23rd International Symposium on Artificial Life and Robotics (AROB2018) (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Itsuki Noda
    • 1
  • Yohsuke Murase
    • 2
  • Nobuyasu Ito
    • 3
    • 4
  • Kiyoshi Izumi
    • 3
  • Hiromitsu Hattori
    • 5
  • Tomio Kamada
    • 6
  • Hideyuki Mizuta
    • 7
  • Mikio Takeuchi
    • 7
  1. 1.AISTTsukubaJapan
  2. 2.Center for Computational ScienceRIKENKobeJapan
  3. 3.University of TokyoTokyoJapan
  4. 4.RikenTokyoJapan
  5. 5.Ritsumei UniversityKyotoJapan
  6. 6.Kobe UniversityKobeJapan
  7. 7.IBMTokyoJapan

Personalised recommendations