Skip to main content

Numerical Library Based on Hierarchical Domain Decomposition

  • Chapter
  • First Online:
Advanced Software Technologies for Post-Peta Scale Computing

Abstract

We have been developing an open-source computer-aided engineering (CAE) software, ADVENTURE, which is a general-purpose parallel finite element analysis system and can simulate a large-scale analysis model with supercomputer. For supercomputer architecture such as an exa-scale system, to obtain high computational efficiency for software that requires large-scale numerical calculation data processing, a programming model that considers the hierarchical structure of hardware, such as a microprocessor and memory, is necessary. From this point of view, ADVENTURE system was developed using the hierarchical domain decomposition method (HDDM) as the basic technology for a large-scale data system. HDDM is technology developed by ourselves mainly for numerical analysis method. In particular, we have developed application-specific system software that can obtain high performance by focusing on simulation of continuum mechanics by finite element method (FEM) and particle method which are highly demanded by academic research and industry. We have developed four research items “DDM I/O (input/output) library,” “DDM solver library,” “DSL for continuum mechanics,” and “continuous mechanics simulator.” The software, which is the result of our research, is released as open-source software on the sub-project page in the ADVENTURE project homepage. In this chapter, some of those libraries are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yagawa, G., Shioya, R.: Parallel finite elements on a massively parallel computer with domain decomposition. Comput. Syst. Eng. 4, 495–503 (1994)

    Article  Google Scholar 

  2. ADVENTURE Project (2018). http://adventure.sys.tu.tokyo.ac.jp/

    Google Scholar 

  3. LexADV: Development of a numerical library based on hierarchical domain decomposition for post petascale simulation (2018). http://adventure.sys.t.u-tokyo.ac.jp/lexadv/index.html

  4. Glowinski, R., Dinh, Q. V., Periaux, J.: Domain decomposition methods for nonlinear problems in fluid dynamics. Comput. Methods Appl. Mech. Eng. 40, 27–109 (1983)

    Article  MathSciNet  Google Scholar 

  5. Quarteroni, A., Vali, A.: Domain Decomposition Methods for Par-tial Differential Equations (Clarendon Press, Oxford, 1999)

    Google Scholar 

  6. Yoshimura, S., Shioya, R., Noguchi, H., Miyamura, T.: Advanced general-purpose computational mechanics system for large scale analysis and design. J. Comput. Appl. Math. 149, 279–296 (2002)

    Article  Google Scholar 

  7. Amestoy, P.R., Duf, I.S. and L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  Google Scholar 

  8. Fujii, A., Nishida, A., Oyanagi Y.: Evaluation of parallel aggregate creation orders: smoothed aggregation algebraic multigrid method. In: High Performance Computational Science and Engineering, pp. 99–122. Springer, New York (2005)

    Google Scholar 

  9. Ogino, M., Shioya, R., Kanayama, H.: An inexact balancing preconditioner for large-scale structural analysis. J. Comput. Sci. Tech. 2, 150–161 (2008)

    Article  Google Scholar 

  10. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9, 233–241 (1993)

    Article  MathSciNet  Google Scholar 

  11. Okuda, H., et al.: Parallel Finite Element Analysis Platform for the Earth Simulator: GeoFEM. Lecture Notes in Computer Science, vol. 2659, pp. 773–780. Springer, Berlin/Heidelberg (2003)

    Google Scholar 

  12. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25, 3–60 (2011)

    Article  Google Scholar 

  13. Fabian, N., et al.: The paraview coprocessing library: a scalable, general purpose in situ visualization library. IEEE Symposium on Large Data Analysis and Visualization, Providence, pp. 89–96 (2011)

    Google Scholar 

  14. Wada, Y., et al.: High-resolution visualization library for ex-ascale supercomputer. In: Dobashi, Y., Ochiai, H. (eds.) Mathematical Progress in Expressive Image Synthesis III. Springer Science Mathematics for Industry, pp. 83–94. Springer, Singapore (2016)

    Google Scholar 

  15. Wada, Y., et al.: Development of LexADV_VSCG library for a viewer with high resolution image. In: Proceedings of 21th JSCES Conference, vol. 21, 2p (2016)

    Google Scholar 

  16. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for frag-mentation of incompressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)

    Article  Google Scholar 

  17. Murotani, K., et al.: Development of hierarchical domain decomposition explicit MPS method and application to large-scale tsunami analysis with floating objects. J. Adv. Simul. Sci. Eng. 1(1), 16–35 (2014)

    Article  Google Scholar 

  18. Koshizuka, S., Nobe, A., Oka, Y.: Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Methods Fluids 26, 751–769 (1998)

    Article  Google Scholar 

  19. Kawai, H., et al.: AutoMT, a library for tensor operations and its performance evaluation for solid continuum mechanics applications. Mech. Eng. Lett. 1, Paper No. 15-00349 (2015)

    Article  Google Scholar 

  20. Holzapfel, G.A.: Nonlinear Solid Mechanics – A Continuum Approach for Engineering. Wiley, New York (2000)

    MATH  Google Scholar 

  21. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge/New York (2008)

    Book  Google Scholar 

  22. Kanayama, H., Zheng H., Maeno, N.: A domain decomposition method for large-scale 3-D nonlinear magnetostatic problems. Theor. Appl. Mech. Jpn. 52, 247–254 (2003)

    Google Scholar 

  23. Sugimoto, S., Ogino, M., Kanayama, H., Yoshimura, S.: Introduction of a direct method at subdomains in non-linear magnetostatic analysis with HDDM. In: 2010 International Conference on Broadband, Wireless Computing, Communication and Applications, Fukuoka, pp. 304–309 (2010)

    Google Scholar 

  24. Kanayama, H., Sugimoto, S.: Effectiveness A-ϕ method in a parallel computing with an iterative domain decomposition method. IEEE Trans. Magn. 42(4), 539–542 (2006)

    Article  Google Scholar 

  25. Sugimoto, S., et al.: Improvement of convergence in time-harmonic eddy current analysis with hierar-chical domain decomposition method. Trans. Jpn. Soc. Simul. Tech. (in Japanese) 7(1), 110–17 (2015)

    Google Scholar 

  26. Sugimoto, S., Takei, A., Ogino, M.: Finite element analysis with tens of billions of degrees of freedom in a high-frequency electromagnetic field. Mech. Eng. Lett. 3, Paper No. 16-0067 (2017)

    Article  Google Scholar 

  27. Takei, A., Yoshimura, S., Kanayama, H.: Large scale parallel finite element analyses of high frequency electromagnetic field in commuter trains. Comput. Model. Eng. Sci. 31(1), 13–24 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Kanai, Y.: Description of TEAM workshop problem 29: whole body cavity resonator. Technical report TEAM Workshop in Tucson (1998)

    Google Scholar 

  29. Sugimoto, S., Ogino, M., Kanayama H., Takei, A.: Hierarchical domain decomposition method for devices including moving bodies. J. Adv. Simul. Sci. Eng. 4(1), 99–116 (2018)

    Article  Google Scholar 

  30. NICT EMC group home page (2018). http://emc.nict.go.jp/bio/index.html

  31. Conil, E., et al.: Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain. Phys. Med. Biol. 53, 1511–1525 (2008)

    Article  Google Scholar 

  32. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Shioya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shioya, R. et al. (2019). Numerical Library Based on Hierarchical Domain Decomposition. In: Sato, M. (eds) Advanced Software Technologies for Post-Peta Scale Computing. Springer, Singapore. https://doi.org/10.1007/978-981-13-1924-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1924-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1923-5

  • Online ISBN: 978-981-13-1924-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics