Chemical Synthesis of Boranophosphate Deoxy-ribonucleotides

  • Yohei Nukaga
  • Takeshi Wada


Boranophosphate deoxyribonucleotides, in which a non-bridging oxygen atom of each phosphodiester internucleotidic linkage is replaced by a BH3 group, are useful as therapeutic agents owing to affinity for complementary RNA, nuclease resistance, RNase H activity, efficient cellular uptake, and potency for gene suppression. Over past two decades, chemists have tried to develop an efficient method for the chemical synthesis of boranophosphate deoxyribonucleotides. In this review, recent studies on the synthesis of boranophosphate deoxyribonucleotides are focused.


Boranophosphate DNA Stereodefined boranophosphate DNA Solid-phase synthesis Stereocontrolled synthesis H-phosphonate approach Phosphoramidite approach Boranophosphotriester approach H-boranophosphonate approach Oxazaphospholidine approach 


  1. 1.
    Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293Google Scholar
  2. 2.
    Shukla S, Sumaria CS, Pradeepkumar PI (2010) Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. ChemMedChem 5:328–349Google Scholar
  3. 3.
    Seto AG (2010) The road toward microRNA therapeutics. Int J Biochem Cell Biol 42:1298–1305Google Scholar
  4. 4.
    Nishina K, Piao W, Yoshida-Tanaka K et al (2015) DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat Commun 6:7969Google Scholar
  5. 5.
    Sharma VK, Sharma RK, Singh SK (2014) Antisense oligonucleotides: modifications and clinical trials. Med Chem Commun 5:1454–1471Google Scholar
  6. 6.
    Guga P, Koziołkiewicz M (2011) Phosphorothioate nucleotides and oligonucleotides – recent progress in synthesis and application. Chem Biodivers 8:1642–1681Google Scholar
  7. 7.
    Dirin M, Winkler J (2013) Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin Biol Ther 13:875–888Google Scholar
  8. 8.
    Sergueev DS, Shaw BR (1998) H-phosphonate approach for solid-phase synthesis of oligodeoxyribonucleoside boranophosphates and their characterization. J Am Chem Soc 120:9417–9427Google Scholar
  9. 9.
    Hall AH, Wan J, Shaughnessy EE et al (2004) RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res 32:5991–6000Google Scholar
  10. 10.
    Rait VK, Shaw BR (1999) Boranophosphates support the RNase H cleavage of polyribonucleotides. Antisense Nucleic Acid Drug Dev 9:53–60Google Scholar
  11. 11.
    Olesiak M, Krivenko A, Krishna H et al (2011) Synthesis and biological activity of borane phosphonate DNA. Phosphorus Sulfur Silicon Relat Elem 186:921–932Google Scholar
  12. 12.
    Li P, Sergueeva ZA, Dobrikov M et al (2007) Nucleoside and oligonucleoside boranophosphates: chemistry and properties. Chem Rev 107:4746–−4796Google Scholar
  13. 13.
    Chen Y-Q, Qu F-C, Zhang Y-B (1995) Diuridine 3′,5′-boranophosphate: preparation and prop- erties. Tetrahedron Lett 36:745–748Google Scholar
  14. 14.
    Wang JX, Sergueev DS, Shaw BR (2005) The effect of a single boranophosphate substitution with defined configuration on the thermal stability and conformation of a DNA duplex. Nucleosides Nucleotides Nucleic Acids 24:951–955Google Scholar
  15. 15.
    Johnson CN, Spring AM, Sergueev D et al (2011) Structural basis of the RNase H1 activity on stereo regular borano phosphonate DNA/RNA hybrids. Biochemistry 50:3903–3912Google Scholar
  16. 16.
    Sood A, Shaw BR, Spielvogel BF (1990) Boron-containing nucleic acids. 2. Synthesis of oligodeoxynucleoside boranophosphates. J Am Chem Soc 112:9000–9001Google Scholar
  17. 17.
    Sergueeva ZA, Sergueev DS, Shaw BR (2001) Borane-amine complexes – versatile reagents in the chemistry of nucleic acids and their analogs. Nucleosides Nucleotides Nucleic Acids 20:941–945Google Scholar
  18. 18.
    McCuen HB, Noé MS, Sierzchala AB et al (2006) Synthesis of mixed sequence borane phosphonate DNA. J Am Chem Soc 128:8138–8139Google Scholar
  19. 19.
    Roy S, Olesiak M, Shang S et al (2013) Silver nanoassemblies constructed from boranephosphonate DNA. J Am Chem Soc 135:6234–6241Google Scholar
  20. 20.
    Zhang JC, Terhorst T, Matteucci MD (1997) Synthesis and hybridization study of a boranophosphate-linked oligothymidine deoxynucleotide. Tetrahedron Lett 38:4957–4960Google Scholar
  21. 21.
    Higson AP, Sierzchala A, Brummel H et al (1998) Synthesis of an oligothymidylate containing boranophosphate linkages. Tetrahedron Lett 39:3899–3902Google Scholar
  22. 22.
    Sergueev DS, Sergueeva ZA, Shaw BR (2001) Synthesis of oligonucleoside boranophosphates via an H-phosphonate method without nucleobase protection. Nucleosides Nucleotides Nucleic Acids 20:789–795Google Scholar
  23. 23.
    Wada T, Sato Y, Honda F et al (1997) Chemical synthesis of oligodeoxyribonucleotides using N-unprotected H-phosphonate monomers and carbonium and phosphonium condensing reagents: O-selective phosphonylation and condensation. J Am Chem Soc 119:12710–12721Google Scholar
  24. 24.
    Wada T, Shimizu M, Oka N et al (2002) A new boranophosphorylation reaction for the synthesis of deoxyribonucleoside boranophosphates. Tetrahedron Lett 43:4137–4140Google Scholar
  25. 25.
    Shimizu M, Wada T, Oka N et al (2004) A novel method for the synthesis of dinucleoside boranophosphates by a boranophosphotriester method. J Org Chem 69:5261–5268Google Scholar
  26. 26.
    Shimizu M, Saigo K, Wada T (2006) Solid-phase synthesis of oligodeoxyribonucleoside boranophosphates by the boranophosphotriester method. J Org Chem 71:4262–4269Google Scholar
  27. 27.
    Higashida R, Oka N, Kawanaka T et al (2009) Nucleoside H-boranophosphonates: a new class of boron-containing nucleotide analogues. Chem Commun:2466–2468Google Scholar
  28. 28.
    Uehara S, Hiura S, Higashida R et al (2014) Solid-phase synthesis of P-boronated oligonucleotides by the H-boranophosphonate method. J Org Chem 79:3465–3472Google Scholar
  29. 29.
    Li H, Porter K, Huang FQ et al (1995) Boron-containing oligodeoxyribonucleotide 14mer duplexes: enzymatic synthesis and melting studies. Nucleic Acids Res 23:4495–4501Google Scholar
  30. 30.
    Oka N, Wada T, Saigo K (2002) Diastereocontrolled synthesis of dinucleoside phosphorothioates using a novel class of activators, dialkyl(cyanomethyl)ammonium tetrafluoroborates. J Am Chem Soc 124:4962–4963Google Scholar
  31. 31.
    Oka N, Wada T, Saigo K (2003) An oxazaphospholidine approach for the stereocontrolled synthesis of oligonucleoside phosphorothioates. J Am Chem Soc 125:8307–8317Google Scholar
  32. 32.
    Oka N, Yamamoto M, Sato T et al (2008) Solid-phase synthesis of stereoregular oligodeoxyribonucleoside phosphorothioates using bicyclic oxazaphospholidine derivatives as monomer units. J Am Chem Soc 130:16031–16037Google Scholar
  33. 33.
    Wada T, Maizuru Y, Shimizu M et al (2006) Stereoselective synthesis of dinucleoside boranophosphates by an oxazaphospholidine method. Bioorg Med Chem Lett 16:3111–3114Google Scholar
  34. 34.
    Oka N, Maizuru Y, Shimizu M et al (2010) Solid-phase synthesis of oligodeoxyribonucleotides without base protection utilizing O-selective reaction of oxazaphospholidine derivatives. Nucleosides Nucleotides Nucleic Acids 29:144–154Google Scholar
  35. 35.
    Iwamoto N, Oka N, Sato T et al (2009) Stereocontrolled solid-phase synthesis of oligonucleo- side H-phosphonates by an oxazaphospholidine approach. Angew Chem Int Ed 48:496–499Google Scholar
  36. 36.
    Iwamoto N, Oka N, Wada T (2012) Stereocontrolled synthesis of oligodeoxyribonucleoside boranophosphates by an oxazaphospholidine approach using acid-labile N-protecting groups. Tetrahedron Lett 53:4361–4364Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Medicinal and Life Science, Faculty of Pharmaceutical SciencesTokyo University of ScienceNodaJapan

Personalised recommendations