Advertisement

Effects of 2′-O-Modifications on RNA Duplex Stability

  • Yoshiaki Masaki
  • Akihiro Ohkubo
  • Kohji Seio
  • Mitsuo Sekine
Chapter

Abstract

Modifications of RNA have been widely studied. Despite the long history of studies on 2′-hydroxyl modifications, they are still attracting attention because of their facile synthetic accessibility and large influence on the biological and physical properties of RNA duplexes. This chapter focuses on the effects of chemical modifications on RNA duplex stability. The effects of the 2′-hydroxyl modifications on preorganization of the RNA backbone and hydration around the 2′-site are briefly described. Our recent studies on the development of methods for estimating the hybridization ability of synthetic 2′-O-modified RNAs using molecular dynamic simulations will be reviewed.

Keywords

Chemically modified RNA 2′-O-modification Deformability Molecular dynamic simulations 

References

  1. 1.
    Auffinger P, Westhof E (2001) Hydrophobic groups stabilize the hydration shell of 2′-O-methylated RNA duplexes. Angew Chem Int Ed 40(24):4648–4650Google Scholar
  2. 2.
    Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280CrossRefGoogle Scholar
  3. 3.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  4. 4.
    Bobst AM, Rottman F, Cerutti PA (1969) Effect of the methylation of the 2′-hydroxyl groups in polyadenylic acid on its structure in weakly acidic and neutral solutions and on its capability to form ordered complexes with polyuridylic acid. J Mol Biol 46(2):221–234CrossRefPubMedGoogle Scholar
  5. 5.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197CrossRefGoogle Scholar
  6. 6.
    Egli M, Minasov G, Tereshko V, Pallan PS, Teplova M, Inamati GB, Lesnik EA, Owens SR, Ross BS, Prakash TP, Manoharan M (2005) Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2′-O-ribonucleic acid modifications. Biochemistry 44(25):9045–9057Google Scholar
  7. 7.
    Egli M, Pallan PS (2010) Crystallographic studies of chemically modified nucleic acids: a backward glance. Chem Biodivers 7(1):60–89CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Egli M, Portmann S, Usman N (1996) RNA hydration: a detailed look. Biochemistry 35(26):8489–8494CrossRefPubMedGoogle Scholar
  9. 9.
    Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A 83(24):9373–9377CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Go M, Go N (1976) Fluctuations of an α-helix. Biopolymers 15(6):1119–1127CrossRefPubMedGoogle Scholar
  11. 11.
    Guschlbauer W, Jankowski K (1980) Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res 8(6):1421–1433CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12(7):1197–1205CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Joung IS, Cheatham TE 3rd (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041Google Scholar
  14. 14.
    Kawai G, Yamamoto Y, Kamimura T, Masegi T, Sekine M, Hata T, Iimori T, Watanabe T, Miyazawa T, Yokoyama S (1992) Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group. Biochemistry 31(4):1040–1046CrossRefPubMedGoogle Scholar
  15. 15.
    Kierzek E, Mathews DH, Ciesielska A, Turner DH, Kierzek R (2006) Nearest neighbor parameters for Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides. Nucleic Acids Res 34(13):3609–3614Google Scholar
  16. 16.
    Kierzek E, Pasternak A, Pasternak K, Gdaniec Z, Yildirim I, Turner DH, Kierzek R (2009) Contributions of stacking, preorganization, and hydrogen bonding to the thermodynamic stability of duplexes between RNA and 2′-O-methyl RNA with locked nucleic acids. Biochemistry 48(20):4377–4387CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kool ET (1997) Preorganization of DNA: design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem Rev 97(5):1473–1488CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14):3607–3630CrossRefGoogle Scholar
  19. 19.
    Lankas F, Sponer J, Langowski J, Cheatham TE 3rd (2003) DNA basepair step deformability inferred from molecular dynamics simulations. Biophys J 85(5):2872–2883Google Scholar
  20. 20.
    Lesnik EA, Guinosso CJ, Kawasaki AM, Sasmor H, Zounes M, Cummins LL, Ecker DJ, Cook PD, Freier SM (1993) Oligodeoxynucleotides containing 2′-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry 32(30):7832–7838CrossRefPubMedGoogle Scholar
  21. 21.
    Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31(17):5108–5121CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lu XJ, Olson WK (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc 3(7):1213–1227CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matveeva OV, Mathews DH, Tsodikov AD, Shabalina SA, Gesteland RF, Atkins JF, Freier SM (2003) Thermodynamic criteria for high hit rate antisense oligonucleotide design. Nucleic Acids Res 31(17):4989–4994CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Obika S, Nanbu D, Hari Y, Morio K-I, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedron Lett 38(50):8735–8738CrossRefGoogle Scholar
  25. 25.
    Oeda Y, Iijima Y, Taguchi H, Ohkubo A, Seio K, Sekine M (2009) Microwave-assisted synthesis of 2′-O-aryluridine derivatives. Org Lett 11(24):5582–5585CrossRefPubMedGoogle Scholar
  26. 26.
    Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein–DNA crystal complexes. Proc Natl Acad Sci U S A 95(19):11163–11168CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43(12):3537–3554CrossRefPubMedGoogle Scholar
  28. 28.
    Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE 3rd, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92(11):3817–3829CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Prakash TP, Puschl A, Lesnik E, Mohan V, Tereshko V, Egli M, Manoharan M (2004) 2′-O-[2-(guanidinium)ethyl]-modified oligonucleotides: stabilizing effect on duplex and triplex structures. Org Lett 6(12):1971–1974CrossRefPubMedGoogle Scholar
  30. 30.
    Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N (2011) Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 115(47):13862–13872CrossRefPubMedGoogle Scholar
  31. 31.
    Prhavc M, Prakash TP, Minasov G, Cook PD, Egli M, Manoharan M (2003) 2′-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] modified oligonucleotides: symbiosis of charge interaction factors and stereoelectronic effects. Org Lett 5(12):2017–2020Google Scholar
  32. 32.
    Rozners E, Moulder J (2004) Hydration of short DNA, RNA and 2′-OMe oligonucleotides determined by osmotic stressing. Nucleic Acids Res 32(1):248–254CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sabahi A, Guidry J, Inamati GB, Manoharan M, Wittung-Stafshede P (2001) Hybridization of 2′-ribose modified mixed-sequence oligonucleotides: thermodynamic and kinetic studies. Nucleic Acids Res 29(10):2163–2170CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saneyoshi H, Seio K, Sekine M (2005) A general method for the synthesis of 2′-O-cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J Org Chem 70(25):10453–10460CrossRefPubMedGoogle Scholar
  35. 35.
    Sekine M, Oeda Y, Iijima Y, Taguchi H, Ohkubo A, Seio K (2011) Synthesis and hybridization properties of 2′-O-methylated oligoribonucleotides incorporating 2′-O-naphthyluridines. Org Biomol Chem 9(1):210–218CrossRefPubMedGoogle Scholar
  36. 36.
    Shukla S, Sumaria CS, Pradeepkumar PI (2010) Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. ChemMedChem 5(3):328–349CrossRefPubMedGoogle Scholar
  37. 37.
    Sioud M (2006) Innate sensing of self and non-self RNAs by toll-like receptors. Trends Mol Med 12(4):167–176CrossRefPubMedGoogle Scholar
  38. 38.
    Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34(35):11211–11216CrossRefPubMedGoogle Scholar
  39. 39.
    Sugimoto N, Nakano S, Yoneyama M, Honda K (1996) Improved thermodynamic pand helix initiation factor to pedict stability of DNA duplexes. Nucleic Acids Res 24(22):4501–4505CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Teplova M, Minasov G, Tereshko V, Inamati GB, Cook PD, Manoharan M, Egli M (1999) Crystal structure and improved antisense properties of 2′-O-(2-methoxyethyl)-RNA. Nat Struct Biol 6(6):535–539CrossRefPubMedGoogle Scholar
  41. 41.
    Tsuruoka H, Shohda K, Wada T, Sekine M (2000) Synthesis and conformational properties of oligonucleotides incorporating 2′-O-phosphorylated ribonucleotides as structural motifs of pre-tRNA splicing intermediates. J Org Chem 65(22):7479–7494CrossRefPubMedGoogle Scholar
  42. 42.
    Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K (2008) Thermodynamic stability and Watson–Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 36(22):7100–7109CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Walton SP, Stephanopoulos GN, Yarmush ML, Roth CM (2002) Thermodynamic and kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA. Biophys J 82(1):366–377CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefPubMedGoogle Scholar
  45. 45.
    Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37(42):14719–14735CrossRefPubMedGoogle Scholar
  46. 46.
    Yamada T, Masaki Y, Okaniwa N, Kanamori T, Ohkubo A, Tsunoda H, Seio K, Sekine M (2014) Synthesis and properties of oligonucleotides modified with 2′-O-(2-carboxyethyl)nucleotides and their carbamoyl derivatives. Org Biomol Chem 12(33):6457–6464CrossRefPubMedGoogle Scholar
  47. 47.
    Yamana K, Iwase R, Furutani S, Tsuchida H, Zako H, Yamaoka T, Murakami A (1999) 2′-pyrene modified oligonucleotide provides a highly sensitive fluorescent probe of RNA. Nucleic Acids Res 27(11):2387–2392CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zatsepin TS, Gait MJ, Oretskaya TS (2004) 2′-functionalized nucleic acids as structural tools in molecular biology. IUBMB Life 56(4):209–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yoshiaki Masaki
    • 1
  • Akihiro Ohkubo
    • 1
  • Kohji Seio
    • 1
  • Mitsuo Sekine
    • 2
  1. 1.Department of Life Science and TechnologyTokyo Institute of TechnologyMidoriku, YokohamaJapan
  2. 2.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations