Australian System for Reporting Thyroid Cytology

  • Priyanthi KumarasingheEmail author


Standardised Reporting of Thyroid Cytology in Australasia: Structured Pathology Protocol of Royal College of Pathologists of Australasia (RCPA) and Australian Society of Cytology (ASC)


  1. 1.
    Royal College of Pathologists of Australasia (RCPA). RCPA Cancer. Protocols: Thyroid cytology structured reporting protocol (1st edition). 2014. Accessed 9 Mar 2015.
  2. 2.
    Tan H, Gharib H, Reading CC. Solitary thyroid nodule. Comparison between palpation and ultrasonography. Arch Intern Med. 1995;155:2418–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Mackenzie EJ, Mortimer RH. Thyroid nodules and thyroid cancer. Med J Aust. 2004;180(5):242–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Australian Institute of Health and Welfare (AIHW). Australian Cancer Incidence and Mortality (ACIM) books. 2012. Accessed 3 Dec 2012.
  5. 5.
    Orell SR, Philips J. Broadsheet number 57: problems in fine needle biopsy of the thyroid. Pathology. 2000;32(3):191–8.PubMedCrossRefGoogle Scholar
  6. 6.
    En NM, Kumarasinghe MP, Tie B, Sterrett GF, Wood B, Walsh J, Nguyen H, Whyte A, Frost F. Experience with standardized thyroid fine-needle aspiration reporting categories. Cancer Cytopathology. 2010;118(6):423–33.CrossRefGoogle Scholar
  7. 7.
    Tsan CJ, Serpell JW, Poh YY. The impact of synoptic cytology reporting on fine-needle aspiration cytology of thyroid nodules. ANZ J Surg. 2007;77(11):991–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Ali S, Cibas ES, editors. The Bethesda system for reporting thyroid cytopathology. Definitions, criteria and explanatory notes. 1st edition. New York: Springer; 2010.Google Scholar
  9. 9.
    The Papanicolaou Society of Cytopathology Task Force on Standards for Practice. Guidelines of the Papanicolaou Society of Cytopathology for fine needle aspiration procedure and reporting. Diagn Cytopathol. 1997;17:239–47.CrossRefGoogle Scholar
  10. 10.
    British Thyroid Association Royal College of Physicians. Guidelines for the management of thyroid cancer 2nd edition. In: Perros P, editor. Report of the Thyroid Cancer Guidelines Update Group. London: Royal College of Physicians; 2007.Google Scholar
  11. 11.
    Royal College of Pathologists of Australasia (RCPA). Guidelines for authors of structured cancer pathology reporting protocols. Surry Hills, NSW: RCPA; 2009.Google Scholar
  12. 12.
    Kumarasinghe MP, Cummings MC, Raymond W, et al. Approach to thyroid cytology: rationale for standardisation. Pathology. 2015;47(4):285–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Saleh H, Bassily N, Hammoud MJ. Utility of a liquid-based, monolayer preparation in the evaluation of thyroid lesions by fine needle aspiration biopsy: comparison with the conventional smear method. Acta Cytol. 2009;53(2):130–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer AH, Clayton AC, Bentz JS, Wasserman PG, Henry MR, Souers RJ, Moriarty AT. Performance differences between conventional smears and liquid-based preparations of thyroid fine-needle aspiration samples: analysis of 47,076 responses in the College of American Pathologists Interlaboratory Comparison Program in Non-Gynecologic Cytology. Arch Pathol Lab Med. 2013;137(1):26–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumarasinghe MP, Sheriffdeen AH. Fine needle sampling without aspiration. Pathology. 1995;27:330–2.PubMedCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Judkins AR, Roberts SA, LiVolsi VA. Utility of immunohistochemistry in the evaluation of necrotic thyroid tumours. Hum Pathol. 1999;30:1373–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Chai SM, Kumarasinghe MP. Diagnosis of necrotic and degenerate thyroid lesions: value of Immunohistochemistry. Histopathology. 2011;59:496–503.PubMedCrossRefGoogle Scholar
  19. 19.
    Choi KU, Kim JY, Park DY, et al. Recommendations for the management of cystic thyroid nodules. ANZ J Surg. 2005;75(7):537–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Xu B, Thong N, Tan D, Khoury T. Expression of thyroid transcription factor-1 in colorectal carcinoma. Appl Immunohistochem Mol Morphol. 2010;18(3):244–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Robens J, Goldstein L, Gown AM, Schnitt SJ. Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol. 2010;34(12):1881–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Leite KR, Mitteldorf CA, Srougi M, Dall'oglio MF, Antunes AA, Pontes J Jr, Camara-Lopes LH. Cdx2, cytokeratin 20, thyroid transcription factor 1, and prostate-specific antigen expression in unusual subtypes of prostate cancer. Ann Diagn Pathol. 2008;12(4):260–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Nonaka D, Tang Y, Chiriboga L, Rivera M, Ghossein R. Diagnostic utility of thyroid transcription factors Pax8 and TTF-2 (FoxE1) in thyroid epithelial neoplasms. Mod Pathol. 2008;21(2):192–200.PubMedCrossRefGoogle Scholar
  24. 24.
    Enriquez ML, Baloch ZW, Montone KT, Zhang PJ, LiVolsi VA. CDX2 expression in columnar cell variant of papillary thyroid carcinoma. Am J Clin Pathol. 2012;137(5):722–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Schmitt AC, Cohen C, Siddiqui MT. Paired box gene 8, HBME-1, and Cytokeratin 19 expression in preoperative fine-needle aspiration of papillary thyroid carcinoma. Cancer Cytopathol. 2010;118(4):196–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Nga ME, Lim GS, Soh CH, Kumarasinghe MP. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma. Diagn Cytopathol. 2008;36(8):550–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Cui W, Sang W, Zheng S, Ma Y, Liu X, Zhang W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab. 2012;58(7–8):673–80.PubMedGoogle Scholar
  28. 28.
    Forrest CH, Frost FA, Bastiaan de Boer W. Medullary carcinoma of the thyroid accuracy of diagnosis by fine-needle aspiration cytology. Cancer Cytopathol. 1998;84(5):295–302.CrossRefGoogle Scholar
  29. 29.
    Leslie C, Grieu-Iacopetta F, Richter A, et al. BRAF p.Val600Glu (V600E) mutation detection in thyroid fine needle aspiration cell block samples: a feasibility study. Pathology. 2015;47:432–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang G, Cho EY, Shin JH, Chung JH, Kim JW, Oh YL. Role of BRAFV600E mutation analysis and second cytologic review of fine needle aspiration for evaluating thyroid nodule. Cancer Cytopathol. 2012;120:44–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New Engl J Med. 2012;367(8):705–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Giovanella L, Ceriani L, Suriano S. Lymph node thyroglobulin measurement in diagnosis of neck metastases of differentiated thyroid carcinoma. J Thyroid Res. 2011;2011:621839. Scholar
  33. 33.
    Baloch ZW, Barroeta JE, Walsh J, Gupta PK, Livolsi VA, Langer JE, et al. Utility of Thyroglobulin measurement in fine-needle aspiration biopsy specimens of lymph nodes in the diagnosis of recurrent thyroid carcinoma. Cytojournal. 2008;5:1.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mayo Clinic. Online Test Catalog. 2014. Accessed 8 Aug 2014.
  35. 35.
    World Health Organization (WHO). In: Lloyd RV, Osamura R, Kloppel G, Rosai J, editors. WHO classification of tumours of endocrine organs (4th edition). Lyon: IARC Press; 2017.Google Scholar
  36. 36.
    Seethala RR, Baloch ZW, Barletta JA. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol. 2018;31:39–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Strickland KC, Howitt BE, Marqusee E, et al. The impact of noninvasive follicular variant of papillary thyroid carcinoma on rates of malignancy for fine-needle aspiration diagnostic categories. Thyroid. 2015;25(9):987–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Agrawal N, Akbani R, Arman Aksoy B. Integrated genomic characterization of papillary thyroid. Carcinoma Cell. 2014;159(3):676–90.Google Scholar
  41. 41.
    Sarkis LM, Norlen O, Aniss A. The Australian experience with the Bethesda classification system for thyroid fine needle aspiration biopsies. Pathology. 2014;46(7):592–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Clinical significance of Malignant and Suspicious categories in thyroid FNA cytology. Predictive value analysis during 2004–2013 from a single laboratory. Australasian division of the International Academy of pathology. Poster presentation IAP-Australasian division 2016.Google Scholar
  43. 43.
    Shi Q, Ibrahim A, Herbert K. Detection of BRAF mutations on direct smears of thyroid fine-needle aspirates through cell transfer technique. Am J Clin Pathol. 2015;143:500–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Kakudo K, Higuchi M, Hirokawa M, et al. Thyroid FNA cytology in Asian practice—active surveillance for an indeterminate thyroid nodule reduces overtreatment of thyroid carcinomas. Cytopathology. 2017;28(6):455–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–131.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Park HJ, Moon JH, Yom CK, et al. Thyroid “Atypia of undetermined significance” with nuclear atypia has high rates of malignancy and BRAF mutation. Cytopathology. 2014;122:512–20.CrossRefGoogle Scholar
  47. 47.
    Takada N, Hirokawa M, Suzuki A, et al. Reappraisal of “cyst fluid only” on thyroid fine-needle aspiration cytology. Endocr J. 2017;64(8):759–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signalling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMedGoogle Scholar
  49. 49.
    Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.PubMedCrossRefGoogle Scholar
  50. 50.
    Ohori NP, Singhal R, Nikiforova MN, Yip L, Schoedel KE, Coyne C, McCoy KL, LeBeau SO, Hodak SP, Carty SE, Nikiforov YE. BRAF mutation detection in indeterminate thyroid cytology specimens: underlying cytologic, molecular, and pathologic characteristics of papillary thyroid carcinoma. Cancer Cytopathol. 2013;121(4):197–205.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith AL, Williams MD, Stewart J, et al. Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol. 2018;126(6):406–13. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Anatomical PathologyPathWest, QEII Medical CentreNedlandsAustralia
  2. 2.Discipline of Pathology and Laboratory MedicineUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations