A Strategy to Search for New Cytologic Criteria in the Differential Diagnostics of Thyroid Cancers Based on Current (Post-Chernobyl) Practice in Ukraine

  • Yuriy M. Bozhok
  • Alexander G. Nikonenko


The rising incidence of thyroid cancer observed after the Chernobyl accident of 1986 in Ukraine necessitates improving early diagnostics of the disease. Respective diagnostic criteria used currently in FNA cytology have a limited specificity. They usually lack a monocausal relation to the medical condition they represent. These limitations are evident in the identification of radiation-related thyroid cancers. In this chapter, a strategy for the search of new FNA indicators for thyroid malignancy is proposed. Cancers are known to evolve by a reiterative process of clonal expansion, genetic diversification, and clonal selection. Yet insufficient attention is given to FNA features reflecting multiclonal nature of thyroid malignancy. Several new FNA indicators providing diagnostically relevant information on early events of an invasive/metastatic process are proposed. They include specific patterns observed in epithelial cell sheets as well as cells of two unusual phenotypes that form such patterns. These enlarged and pleomorphic cells of epithelial origin demonstrate 100% specificity in the identification of the PTC. The conclusion was made that FNA markers reflecting core aspects of an invasive/metastatic process show a higher specificity in the identification of the disease. The strategy to search for cytologic indicators of diagnostic value should account for this fact.


Cell pattern Cytopathology Fine needle aspiration Papillary thyroid carcinoma Thyroid neoplasia 



The authors gratefully acknowledge histologic confirmation provided by the Laboratory of Pathology, Institute of Endocrinology and Metabolism (the head—Dr. T.I. Bogdanova, Ph.D., D.Sc.).


  1. 1.
    Nikiforov YE, Nikiforova MN. Mole genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.CrossRefGoogle Scholar
  2. 2.
    Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene. 2008;27:S9–18.CrossRefGoogle Scholar
  3. 3.
    Bogdanova TI, Zurnadzhy LY, Nikiforov YE, Leeman-Neill RJ, Tronko MD, Chanock S, et al. Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br J Cancer. 2015;113:1556–64.CrossRefGoogle Scholar
  4. 4.
    Baloch ZW, LiVolsi VA. Fine-needle aspiration of thyroid nodules: past, present, and future. Endocr Pract. 2004;10:234–41.CrossRefGoogle Scholar
  5. 5.
    Iglesias ML, Schmidt A, Ghuzlan AA, Lacroix L, Vathaire F, Chevillard S, et al. Radiation exposure and thyroid cancer: a review. Arch Endocrinol Metab. 2017;61:180–7.CrossRefGoogle Scholar
  6. 6.
    LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24:S1–9.CrossRefGoogle Scholar
  7. 7.
    Nikonenko AG, Bozhok YM. Simple computational technique to quantify nuclear shape asymmetry. Cytometry A. 2015;87:309–14.CrossRefGoogle Scholar
  8. 8.
    Renshaw AA. “Histiocytoid” cells in fine-needle aspirations of papillary carcinoma of the thyroid: frequency and significance of an under-recognized cytologic pattern. Cancer. 2002;96:240–3.CrossRefGoogle Scholar
  9. 9.
    Szporn AH, Yuan S, Wu M, Burstein DE. Cellular swirls in fine needle aspirates of papillary thyroid carcinoma: a new diagnostic criterion. Mod Pathol. 2006;19:1470–3.CrossRefGoogle Scholar
  10. 10.
    Aratake Y, Kotani T, Tamura K, Araki Y, Kuribayashi T, Konoe K, et al. Dipeptidyl aminopeptidase IV staining of cytologic preparations to distinguish benign from malignant thyroid diseases. Anat Pathol. 1991;96:306–10.Google Scholar
  11. 11.
    Henry JF, Denizot A, Porcelli A, Villafane M, Zoro P, Garcia S, et al. Thyroperoxidase immunodetection for the diagnosis of malignancy on fine-needle aspiration of thyroid nodules. World J Surg. 1994;18:529–34.CrossRefGoogle Scholar
  12. 12.
    Zelinskaya HV, Bozhok YM. The use of immunocytochemical identification of cytokeratin 17 determinants in pre-surgery diagnostics of malignant lesions of the thyroid. Oncology. 2000;2:56–60.Google Scholar
  13. 13.
    Serini G, Trusolino L, Saggiorato E, Cremona O, De Rossi M, Angeli A, et al. Changes in integrin and E-cadherin expression in neoplastic versus normal thyroid tissue. J Natl Cancer Inst. 1996;88:442–9.CrossRefGoogle Scholar
  14. 14.
    Tanda F, Cossu A, Bosincu L, Manca A, Ibba M, Massarelli G. Intercellular adhesion molecule-1 (ICAM-1) immunoreactivity in well-differentiated thyroid papillary carcinomas. Mod Pathol. 1996;9:53–6.PubMedGoogle Scholar
  15. 15.
    Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol. 2001;14:338–42.CrossRefGoogle Scholar
  16. 16.
    Rafael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin and cytokeratin-19 in the diagnosis of thyroid tumors. Mod Pathol. 1994;7:295–300.Google Scholar
  17. 17.
    Xu XC, el-Naggar AK, Lotan R. Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications. Am J Pathol. 1995;147:815–22.PubMedPubMedCentralGoogle Scholar
  18. 18.
    van Hoeven KH, Kovatich AJ, Miettinen M. Immunocytochemical evaluation of HBME-1. CA 19-9, and CD-15 (Leu-M1) in fine-needle aspirates of thyroid nodules. Diagn Cytopathol. 1998;18:93–7.CrossRefGoogle Scholar
  19. 19.
    Pagan M, Kloos RT, Lin CF, Travers KJ, Matsuzaki H, Tom EY, et al. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics. 2016;17(Suppl 1):6.CrossRefGoogle Scholar
  20. 20.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefGoogle Scholar
  21. 21.
    Bozhok Y, Greenebaum E, Bogdanova TI, McConnell RJ, Zelinskaya A, Brenner AV, et al. NA cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: cytohistopathologic correlation and accuracy of fine-needle aspiration biopsy in nodules detected during the first screening in Ukraine (1998-2000). Cancer. 2009;117:73–81.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pretorius HT, Katikineni M, Kinsella TJ, Barsky SH, Brennan MF, Chu EW, et al. Thyroid nodules after high-dose external radiotherapy. Fine-needle aspiration cytology in diagnosis and management. JAMA. 1982;247:3217–20.CrossRefGoogle Scholar
  23. 23.
    Centeno BA, Szyfelbein WM, Daniels GH, Vickery AL Jr. Fine needle aspiration biopsy of the thyroid gland with prior Graves’ disease treated with radioactive iodine. Morphologic findings and potential pitfalls. Acta Cytol. 1996;40:1189–97.CrossRefGoogle Scholar
  24. 24.
    Bajnok L, Mezosi E, Nagy E, Szabo J, Sztojka I, Varga J, et al. Calculation of the radioiodine dose for the treatment of Graves’ hyperthyroidism: is more than 7-thousand rad target dose necessary? Thyroid. 1999;9:865–9.CrossRefGoogle Scholar
  25. 25.
    Likhtarev I, Bouville A, Kovgan L, Luckyanov NK, Voilleque PG. Questionnaire- and measurement-based individual thyroid doses in Ukraine resulting from the Chornobyl nuclear reactor accident. Radiat Res. 2006;166:271–86.CrossRefGoogle Scholar
  26. 26.
    Fischer AH. The diagnostic pathology of the nuclear envelope in human cancers. Adv Exp Med Biol. 2014;773:49–75.CrossRefGoogle Scholar
  27. 27.
    Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26:125–32.CrossRefGoogle Scholar
  28. 28.
    Gantenberg HW, Wuttke K, Streffer C, Müller WU. Micronuclei in human lymphocytes irradiated in vitro or in vivo. Radiat Res. 1991;128:276–81.CrossRefGoogle Scholar
  29. 29.
    Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res. 1992;271:69–77.CrossRefGoogle Scholar
  30. 30.
    Gutiérrez S, Carbonell E, Galofré P, Creus A, Marcos R. Micronuclei induction by 131I exposure: study in hyperthyroidism patients. Mutat Res. 1997;373:39–45.CrossRefGoogle Scholar
  31. 31.
    Ludwikow G, Ludwikow F, Johanson KJ. Kinetics of micronucleus induction by 125I-labelled thyroid hormone in hormone-responsive cells. Int J Radiat Biol. 1992;61:639–53.CrossRefGoogle Scholar
  32. 32.
    Zotti-Martelli L, Migliore L, Panasiuk G, Barale R. Micronucleus frequency in Gomel (Belarus) children affected and not affected by thyroid cancer. Mutat Res. 1999;440:35–43.CrossRefGoogle Scholar
  33. 33.
    Rocha AS, Soares P, Seruca R, Máximo V, Matias-Guiu X, Cameselle-Teijeiro J, et al. Abnormalities of the E-cadherin/catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J Pathol. 2001;194:358–66.CrossRefGoogle Scholar
  34. 34.
    Huang SH, Wu JC, Chang KJ, Liaw KY, Wang SM. Expression of the cadherin-catenin complex in well-differentiated human thyroid neoplastic tissue. Thyroid. 1999;9:1095–103.CrossRefGoogle Scholar
  35. 35.
    Bozhok YM. Expression of desmosomal proteins in epithelial cells of benign and malignant lesions of human thyroid. J AMS Ukraine. 1999;5:319–27.Google Scholar
  36. 36.
    Gibson MC, Patel AB, Nagpal R, Perrimon N. The emergence of geometric order in proliferating metazoan epithelia. Nature. 2006;442:1038–41.CrossRefGoogle Scholar
  37. 37.
    Nikonenko AG, Bozhok YM. Patterns of papillary thyroid carcinoma cells analyzed in fine-needle aspiration smears may reveal changes in tumor cell behavior. Diagn Cytopathol. 2012;40:E55–61.CrossRefGoogle Scholar
  38. 38.
    Giannini R, Ugolini C, Lupi C, Proietti A, Elisei R, Salvatore G, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:3511–6.CrossRefGoogle Scholar
  39. 39.
    Patriarca C, Macchi RM, Marschner AK, Mellstedt H. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38:68–75.CrossRefGoogle Scholar
  40. 40.
    Fuhrer D, Eszlinger M, Karger S, Krause K, Engelhardt C, Hasenclever D, et al. Evaluation of insulin-like growth factor II, cyclooxygenase-2, ets-1 and thyroid-specific thyroglobulin mRNA expression in benign and malignant thyroid tumours. Eur J Endocrinol. 2005;152:785–90.CrossRefGoogle Scholar
  41. 41.
    Rosignolo F, Maggisano V, Sponziello M, Celano M, Di Gioia CR, D’Agostino M, et al. Reduced expression of THRβ in papillary thyroid carcinomas: relationship with BRAF mutation, aggressiveness and miR expression. J Endocrinol Invest. 2015;38:1283–9.CrossRefGoogle Scholar
  42. 42.
    Bizzarro T, Martini M, Marrocco C, D’Amato D, Traini E, Lombardi CP, et al. The role of CD56 in thyroid fine needle aspiration cytology: a pilot study performed on liquid based cytology. PLoS One. 2015;10:e0132939.CrossRefGoogle Scholar
  43. 43.
    Schmitt AC, Cohen C, Siddiqui MT. Paired box gene 8, HBME-1, and cytokeratin 19 expression in preoperative fine-needle aspiration of papillary thyroid carcinoma: diagnostic utility. Cancer Cytopathol. 2010;118:196–202.CrossRefGoogle Scholar
  44. 44.
    Scognamiglio T, Hyjek E, Kao J, Chen YT. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol. 2006;126:700–8.CrossRefGoogle Scholar
  45. 45.
    de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Giglio A, da Silva Pinhal MA. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;7:97.CrossRefGoogle Scholar
  46. 46.
    Galera-Davidson H, Gonzalez-Campora R. Thyroid. In: Bibbo M, Wilbur DC, editors. Comprehensive cytopathology. 3rd ed. Saunders/Elsevier: Philadelphia. p. 633–70.CrossRefGoogle Scholar
  47. 47.
    Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuriy M. Bozhok
    • 1
  • Alexander G. Nikonenko
    • 2
  1. 1.Department of Functional DiagnosticsInstitute of Endocrinology and MetabolismKievUkraine
  2. 2.Department of CytologyBogomoletz Institute of PhysiologyKievUkraine

Personalised recommendations