Advertisement

Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation

  • Sikandar I. Mulla
  • Fuad Ameen
  • Manjunatha P. Talwar
  • Syed Ali Musstjab Akber Shah Eqani
  • Ram Naresh Bharagava
  • Gaurav Saxena
  • Preeti N. Tallur
  • Harichandra Z. Ninnekar
Chapter

Abstract

Organophosphate pesticides are extensively used for the control of weeds, diseases, and pests of crops. Hence, these insecticides persist in the environs and thereby cause severe pollution problems. Synthetic pesticides including organophosphates insecticides are found to be toxic and/or hazardous to a variety of organisms like living soil biota along with valuable arthropods, fish, birds, human beings, animals, and plants. Organophosphate pesticides might be decontaminated quickly through hydrolysis on exposure to biosphere, which are responsible to be significantly influenced by abiotic and/or biotic factors. The bacterial cultures isolated from various places are the major entities in the environment with a unique capability to break down different organophosphate pesticides for their growth. Additionally, a potential engineered strain(s) application for the bioremediation of organophosphate(s) is of great interest. In the current chapter, the published information on organophosphates impact on environment, toxic effects, and the available results of their degradation are discussed.

Keywords

Toxicity Chlorpyrifos Methyl parathion Quinalphos Profenofos Degradation 

References

  1. Abdullah RR, Ghani SBA, Sukar NA (2016) Degradation of profenofos and λ-cyhalothrin using endogenous bacterial isolates and detection of the responsible genes. J Bioremed Biodegr 7:360CrossRefGoogle Scholar
  2. Abhijith BD, Ramesh M, Poopal RK (2016) Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J Basic Appl Zool 77:31–40CrossRefGoogle Scholar
  3. Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12CrossRefGoogle Scholar
  4. Abraham J, Silambarasan S (2016) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pestic Biochem Physiol 126:13–21CrossRefGoogle Scholar
  5. Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570CrossRefGoogle Scholar
  6. Akbar S, Sultan S, Kertesz M (2014) Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation. World J Microbiol Biotechnol 30:2755–2766CrossRefGoogle Scholar
  7. Alavanja MC, Samanic C, Dosemeci M, Lubin J, Tarone R, Lynch CF, Knott C, Thomas K, Hoppin JA, Barker J, Coble J, Sandler DP, Blair A (2003) Use of agricultural pesticides and prostate cancer risk in the agricultural health study cohort. Am J Epidemiol 157:800–814CrossRefGoogle Scholar
  8. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168(1):400–405CrossRefGoogle Scholar
  9. Barcelo D (1991) Occurrence, handling and chromatographic determination of pesticides in the aquatic environment. A review. Analyst 116(7):681–689CrossRefGoogle Scholar
  10. Bharagava RN, Chowdhary P, Saxena G (2017a) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22.  https://doi.org/10.1201/9781315173351-2 CrossRefGoogle Scholar
  11. Bharagava RN, Saxena G, Chowdhary P (2017b) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 397–426.  https://doi.org/10.1201/9781315173351-15 CrossRefGoogle Scholar
  12. Blakley BR, Yole MJ, Brousseau P, Boermans H, Fournier M (1999) Effect of chlorpyrifos on immune function in rats. Vet Hum Toxicol 41(3):140–144Google Scholar
  13. Bould HL (1995) DDT residues in the environment-a review with a New Zealand perspective. N Z J Agric Res 38:257–277CrossRefGoogle Scholar
  14. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–30.  https://doi.org/10.1201/b18218-2 CrossRefGoogle Scholar
  15. Charoensri K, Esuchart U, Nouwarath S, Pairote P (2001) Degradation of methyl parathion in an aqueous medium by soil bacteria. Sci Asia 27:261–271CrossRefGoogle Scholar
  16. Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293Google Scholar
  17. Cho KM, Math RK, Islam SM, Lim WJ, Hong SY, Kim JM, Yun MG, Cho JJ, Yun HD (2009) Biodegradation of chlorpyrifos by lactic acid bacteria during kimchi fermentation. J Agric Food Chem 57(5):1882–1889CrossRefGoogle Scholar
  18. Cycon M, Zmijowska A, Wojcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16CrossRefGoogle Scholar
  19. Dadson OA, Ellison CA, Singleton ST, Chi L-H, McGarrigle BP, Lein PJ, Farahat FM, Farahat T, Olson JR (2013) Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. Toxicology 306:35–39CrossRefGoogle Scholar
  20. Debnath D, Mandal TK (2000) Study of quinalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 E.C.)-induced damage of the testicular tissues and antioxidant defence systems in Sprague-Dawley albino rats. J Appl Toxicol 20(3):197–204CrossRefGoogle Scholar
  21. Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24CrossRefGoogle Scholar
  22. Dhanjal NIK, Kaur P, Sud D, Cameotra SS (2014) Persistence and biodegradation of quinalphos using soil microbes. Water Environ Res 86:457–461CrossRefGoogle Scholar
  23. Diagne M, Oturan N, Oturan MA (2007) Removal of methyl parathion from water by electrochemically generated Fenton’s reagent. Chemosphere 66(5):841–848CrossRefGoogle Scholar
  24. Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28(4):1715–1725CrossRefGoogle Scholar
  25. Duquesne S, Kuester E (2010) Biochemical, metabolic, and behavioural responses and recovery of Daphnia magna after exposure to an organophosphate. Ecotoxicol Environ Saf 73:353–359CrossRefGoogle Scholar
  26. Dwivedi PD, Das M, Khanna SK (1998) Role of cytochrome P-450 in quinalphos toxicity: effect on hepatic and brain antioxidant enzymes in rats. Food Chem Toxicol 36(5):437–444CrossRefGoogle Scholar
  27. Elersek T, Filipic M (2011) Organophosphorous pesticides – mechanisms of their toxicity. In: Stoytcheva M (ed) Pesticides – the impacts of pesticides exposure. InTechGoogle Scholar
  28. Engel LS, Hill DA, Hoppin JA, Lubin JH, Lynch CF, Pierce J, Samanic C, Sandler DP, Blair A, Alavanja MC (2005) Pesticide use and breast cancer risk among farmers’ wives in the agricultural health study. Am J Epidemiol 161:121–135CrossRefGoogle Scholar
  29. EPA (2012) Environmental protection agency reregistration eligibility decision for profenofos. http://www.epa.gov/oppsrrd1/REDs/profenofos_red.pdf
  30. Fawzy I, Iman Z, Hamza A (2007) The effect of an Organophosphorus insecticide on the hepatic, renal and pulmonary tissues of mice fetuses Egypt. J Med Lab Sci 16:99–113Google Scholar
  31. Feng F, Ge J, Li Y, Cheng J, Zhong J, Yu X (2017) Isolation, colonization, and Chlorpyrifos degradation mediation of the endophytic bacterium Sphingomonas strain HJY in Chinese chives (Allium tuberosum). J Agric Food Chem 65(6):1131–1138CrossRefGoogle Scholar
  32. Fosu-Mensah BY, Okoffo ED, Darko G, Gordon C (2016) Organophosphorus pesticide residues in soils and drinking water sources from cocoa producing areas in Ghana. Environ Syst Res 5:10CrossRefGoogle Scholar
  33. Gangireddygari VSR, Kalva PK, Ntushelo K, Bangeppagari M, Djami Tchatchou A, Bontha RR (2017) Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environ Sci Eur 29(1):11CrossRefGoogle Scholar
  34. Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in Damascus. Folia Microbiol 52(4):423–427CrossRefGoogle Scholar
  35. Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biotechnol Biochem 6:871–876Google Scholar
  36. Gilani RA, Rafique M, Rehman A, Munis MFH, ur Rehman S, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56:105–119CrossRefGoogle Scholar
  37. Goldberg ME, Johnson HE, Knaak JB, Smyth HFJ (1963) Psychopharmacological effects of reversible cholinesterase inhibition induced by N -methyl-3-isopropyl-phenyl carbamate (compound 10854). J Pharm exp Ther 141:244–252Google Scholar
  38. Gomes J, Dawodu AH, Lloyd O, Revitt DM, Anilal SV (1999) Hepatic injury and disturbed amino acid metabolism in mice following prolonged exposure to organophosphorus pesticides. Hum Exp Toxicol 18(1):33–37CrossRefGoogle Scholar
  39. Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C (2016a) Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb Biotechnol 9(6):792–800CrossRefGoogle Scholar
  40. Gong T, Liu R, Zuo Z, Che Y, Yu H, Song C, Yang C (2016b) Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and gamma-hexachlorocyclohexane. ACS Synth Biol 5(5):434–442CrossRefGoogle Scholar
  41. Gotoh M, Sakata M, Endo T, Hayashi H, Seno H, Suzuki O (2001) Profenofos metabolites in human poisoning. Forensic Sci Int 116(2–3):221–226CrossRefGoogle Scholar
  42. Guha A, Kumari B, Bora TC, Roy MK (1997) Possible involvement of plasmids in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576CrossRefGoogle Scholar
  43. Harnpicharnchai K, Chaiear N, Charerntanyarak L (2013) Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam subdistrict, Khon Kaen, Thailand. Southeast Asian J Trop Med Pub Health 44:1088–1097Google Scholar
  44. He J, Fan M, Liu X (2010) Environmental behavior of profenofos under paddy field conditions. Bull Environ Contam Toxicol 84(6):771–774CrossRefGoogle Scholar
  45. Huang QY, Huang L, Huang HQ (2011) Proteomic analysis of methyl parathion-responsive proteins in zebrafish (Danio rerio) brain. Comp Biochem Physiol C Toxicol Pharmacol 153(1):67–74CrossRefGoogle Scholar
  46. Ishag AESA, Abdelbagi AO, Hammad AMA, Elsheikh EAE, Elsaid OE, Hur J-H, Laing MD (2016) Biodegradation of chlorpyrifos, malathion and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498CrossRefGoogle Scholar
  47. Jegede OO, Owojori OJ, Rombke J (2017) Temperature influences the toxicity of deltamethrin, chlorpyrifos and dimethoate to the predatory mite Hypoaspis aculeifer (Acari) and the springtail Folsomia candida (Collembola). Ecotoxicol Environ Saf 140:214–221.  https://doi.org/10.1016/j.ecoenv.2017.02.046 CrossRefGoogle Scholar
  48. John EM, Sreekumar J, Jisha MS (2016) Optimization of Chlorpyrifos degradation by assembled bacterial consortium using response surface methodology. Soil Sedimentol Contam 25:668–682CrossRefGoogle Scholar
  49. Karunanayake CP, Spinelli JJ, McLaughlin JR, Dosman JA, Pahwa P, McDuffie HH (2012) Hodgkin lymphoma and pesticides exposure in men: a Canadian case-control study. J Agromedicine 17(1):30–39CrossRefGoogle Scholar
  50. Katti G, Verma S (1992) Persistence of quinalphos against pests under Indian conditions. Pestic Inf 18:37–40Google Scholar
  51. Kaushik P, Kaushik G (2007) An assessment of structure and toxicity correlation in organochlorine pesticides. J Hazard Mater 143(1–2):102–111CrossRefGoogle Scholar
  52. Khalid S, Hashmi I, Khan SJ (2016) Bacterial assisted degradation of chlorpyrifos: the key role of environmental conditions, trace metals and organic solvents. J Environ Manag 168:1–9CrossRefGoogle Scholar
  53. Khera KS, Kaur J, Sangha GK (2016) Reproductive toxicity of quinalphos on female albino rats: effects on ovary and uterus. Indian J Anim Res 50:537–543Google Scholar
  54. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225CrossRefGoogle Scholar
  55. Kuo W, Regan R (1999) Removal of pesticides from rinsate by adsorption using agricultural residuals as medium. J Environ Sci Health B 34:431–447CrossRefGoogle Scholar
  56. Lakshmi CV, Kumar M, Khanna S (2008) Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int Biodeterior Biodegrad 62:204–209CrossRefGoogle Scholar
  57. Lee W, Blair A, Hoppin JA, Lubin JH, Rusiecki JA, Sandler DP, Dosemeci M, Alavanja MCR (2004) Cancer incidence among pesticide applicators exposed to chlorpyrifos in the agricultural health study. J Nat Cancer Inst 96:1781–1789CrossRefGoogle Scholar
  58. Lee WJ, Sandler DP, Blair A, Samanic C, Cross AJ, Alavanja MCR (2007) Pesticide use and colorectal cancer risk in the agricultural health study. Int J Cancer 121:339–346CrossRefGoogle Scholar
  59. Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158(2):143–149CrossRefGoogle Scholar
  60. Li X, Jiang J, Gu L, Ali SW, He J, Li S (2008) Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. Int Biodeterior Biodegrad 62:331–335CrossRefGoogle Scholar
  61. Li J, Liu J, Shen W, Zhao X, Hou Y, Cao H, Cui Z (2010) Isolation and characterization of 3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp. strain T6. Bioresour Technol 101(19):7479–7483CrossRefGoogle Scholar
  62. Lin L, Liu J, Zhang K, Chen Y (2003) An experimental study of the effects of profenofos on antioxidase in rabbits. Wei Sheng Yan Jiu 32(5):434–435Google Scholar
  63. Liu FY, Hong MZ, Liu DM, Li YW, Shou PS, Yan H, Shi GQ (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci (China) 19(10):1257–1260CrossRefGoogle Scholar
  64. Liu Z, Chen X, Shi Y, Su Z (2012) Bacterial degradation of Chlorpyrifos by Bacillus cereus. Adv Mater Res 356–360:676–680Google Scholar
  65. Liu J, Tan L, Wang J, Wang Z, Ni H, Li L (2016a) Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere 157:200–207.  https://doi.org/10.1016/j.chemosphere.2016.05.031 CrossRefGoogle Scholar
  66. Liu XY, Chen FF, Li CX, Luo XJ, Chen Q, Bai YP, Xu JH (2016b) Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Enzym Microb Technol 93:11–17CrossRefGoogle Scholar
  67. Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342CrossRefGoogle Scholar
  68. Mahboob S, Niazi F, Sultana S, Ahmad Z (2013) Assessment of pesticide residues in water, sediments and muscles of Cyprinus carpio from head Balloki in the River Ravi. Life Sci J 10:32–38Google Scholar
  69. Malghani S, Chatterjee N, Hu X, Zejiao L (2009a) Isolation and characterization of a profenofos degrading bacterium. J Environ Sci (China) 21:1591–1597CrossRefGoogle Scholar
  70. Malghani S, Chatterjee N, Yu HX, Luo Z (2009b) Isolation and identification of Profenofos degrading bacteria. Braz J Microbiol 40:893–900CrossRefGoogle Scholar
  71. Mallick BK, Banerji A, Shakli NA, Sethunathan NN (1999) Bacterial degradation of chlorpyrifos in pure culture and in soil. Bull Environ Contam Toxicol 62:48–55CrossRefGoogle Scholar
  72. Miersma NA, Pepper CB, Anderson TA (2003) Organochlorine pesticides in elementary school yards along the Texas-Mexico border. Environ Pollut 126(1):65–71CrossRefGoogle Scholar
  73. Mohapatra PK (2008) Textbook of environmental microbiology. I.K. International Publishing House Pvt. Ltd, New DelhiGoogle Scholar
  74. Mugni H, Paracampo A, Demetrio P, Pardi M, Bulus G, Ronco A, Bonetto C (2016) Toxicity persistence of Chlorpyrifos in runoff from experimental soybean plots to the non-target amphipod Hyalella curvispina: effect of crop management. Arch Environ Contam Toxicol 70(2):257–264CrossRefGoogle Scholar
  75. Mulla SI, Wang H, Sun Q, Hu A, Yu CP (2016) Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci Rep 6:21965CrossRefGoogle Scholar
  76. Munoz-de-Toro M, Beldomenico HR, Garcia SR, Stoker C, De Jesus JJ, Beldomenico PM, Ramos JG, Luque EH (2006) Organochlorine levels in adipose tissue of women from a littoral region of Argentina. Environ Res 102(1):107–112CrossRefGoogle Scholar
  77. Nair AM, Rebello S, Rishad KS, Asok AK, Jisha MS (2015) Biosurfactant facilitated biodegradation of quinalphos at high concentrations by Pseudomonas aeruginosa Q10. Soil Sediment Contam 24:542–553CrossRefGoogle Scholar
  78. Nasr HM, El-Demerdash FM, El-Nagar WA (2016) Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats: toxicity of insecticide mixture. Environ Sci Pollut Res Int 23(2):1852–1859CrossRefGoogle Scholar
  79. Ojha A, Yaduvanshi SK, Pant SC, Lomash V, Srivastava N (2013) Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ Toxicol 28:543–552CrossRefGoogle Scholar
  80. Ortiz-Hernández ML, Sánchez-Salinas E (2010) Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Rev Int Contam Ambient 26:27–38Google Scholar
  81. Pailan S, Sengupta K, Ganguly U, Saha P (2016) Evidence of biodegradation of chlorpyrifos by a newly isolated heavy metal-tolerant bacterium Acinetobacter sp. strain MemCl4. Environ Earth Sci 75:1019CrossRefGoogle Scholar
  82. Pakala SB, Gorla P, Pinjari AB, Krovidi RK, Baru R, Yanamandra M, Merrick M, Siddavattam D (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73(6):1452–1462CrossRefGoogle Scholar
  83. Patnaik R, Padhy RN (2016) Evaluation of geno-toxicity of methyl parathion and chlorpyrifos to human liver carcinoma cell line (HepG2). Environ Sci Pollut Res Int 23(9):8492–8499CrossRefGoogle Scholar
  84. Pawar KR, Mali GV (2014) Biodegradation of Quinolphos insecticide by Pseudomonas strain isolated from grape rhizosphere soils. Int J Curr Microbiol App Sci 3:606–613Google Scholar
  85. Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831CrossRefGoogle Scholar
  86. Poon BH, Leung CK, Wong CK, Wong MH (2005) Polychlorinated biphenyls and organochlorine pesticides in human adipose tissue and breast milk collected in Hong Kong. Arch Environ Contam Toxicol 49(2):274–282CrossRefGoogle Scholar
  87. Prabhavathy Das G, Pasha Shaik A, Jamil K (2006) Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 29(3):313–312CrossRefGoogle Scholar
  88. Prakash A, Khan S, Aggarwal M, Telang AG, Malik JK (2009) Chlorpyrifos induces apoptosis in murine thymocytes. Toxicol Lett 189:S83CrossRefGoogle Scholar
  89. Price OR, Walker A, Wood M, Oliver MA (2001) Using geostatistics to evaluate spatial variation in pesticide/soil interactions. In: Walker A (ed) Pesticide behaviour in soil and water. vol 78. British Crop Protection Council, Farnham, pp 233–238Google Scholar
  90. Qian B, Zhu LS, Xie H, Wang J, Liu W, Xu QF, Song Y, Xu RJ (2007) Isolation and degrading characters of chlorpyrifos degrading bacteria XZ-3. Huan Jing KeXue 28(12):2827–2832Google Scholar
  91. Qiu XH, Bai WQ, Zhong QZ, Li M, He FQ, Li BT (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101(5):986–994CrossRefGoogle Scholar
  92. Ramanathan MP, Lalithakumari D (1996) Methylparathion degradation by Pseudomonas sp. A3 immobilized in sodium alginate beads. World J Microbiol Biotechnol 12:107–108CrossRefGoogle Scholar
  93. Rani NL, Lalitha-kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004CrossRefGoogle Scholar
  94. Ray A, Chatterjee S, Ghosh S, Bhattacharya K, Pakrashi A, Deb C (1992) Quinalphos-induced suppression of spermatogenesis, plasma gonadotrophins, testicular testosterone production and secretion in adult rats. Environ Res 57(2):181–189CrossRefGoogle Scholar
  95. Rayu S, Nielsen UN, Nazaries L, Singh BK (2017) Isolation and molecular characterization of novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:518CrossRefGoogle Scholar
  96. Reddy NC, Rao JV (2008) Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotox Environ Safe 71:574–582CrossRefGoogle Scholar
  97. Reiss R, Neal B, Lamb JC, Juberg DR (2012) Acetylcholinesterase inhibition dose-response modeling for chlorpyrifos and chlorpyrifos-oxon. Regul Toxicol Pharmacol 63(1):124–131CrossRefGoogle Scholar
  98. Rico EP, de Oliveira DL, Rosemberg DB, Mussulini BH, Bonan CD, Dias RD, Wofchuk S, Souza DO, Bogo MR (2010) Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Res Bull 81(4–5):517–523CrossRefGoogle Scholar
  99. Rubin C, Esteban E, Kieszak S, Hill RH Jr, Dunlop B, Yacovac R, Trottier J, Boylan K, Tomasewski T, Pearce K (2002) Assessment of human exposure and human health effects after indoor application of methyl parathion in Lorain County, Ohio, 1995–1996. Environ Health Perspect 110:1047–1051CrossRefGoogle Scholar
  100. Ruparrelia SG, Verma Y, Kasyap SK, Chatterjee BB (1986) A new approach for the use of standard fish toxicological study. In: Dalela RC, Madhysta MN, Joseph MM (eds) Environmental biology, coastal ecosystem. Academy of Environmental Biology, Muzzafarnagar, pp 89–92Google Scholar
  101. Sadiqul IM, Ferdous Z, Nannu MT, Mostakim GM, Rahman MK (2016) Acute exposure to a quinalphos containing insecticide (convoy) causes genetic damage and nuclear changes in peripheral erythrocytes of silver barb, Barbonymus gonionotus. Environ Pollut 219:949–956CrossRefGoogle Scholar
  102. Safiatou BD, Jean MC, Donald EM (2007) Pesticide residues in soil and water from four cotton growing area of Mali West Africa. J Agric Food Environ Sci 1(1)Google Scholar
  103. Salunkhe VP, Sawant IS, Banerjee K, Rajguru YR, Wadkar PN, Oulkar DP, Naik DG, Sawant SD (2013) Biodegradation of profenofos by Bacillus subtilis isolated from grapevines (Vitis vinifera). J Agric Food Chem 61:7195–7202CrossRefGoogle Scholar
  104. Sandal S, Yilmaz B (2011) Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. Environ Toxicol 26(5):433–442CrossRefGoogle Scholar
  105. Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56.  https://doi.org/10.1201/9781315173351-3 CrossRefGoogle Scholar
  106. Schuh RA, Lein PJ, Beckles RA, Jett DA (2002) Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharmacol 182(2):176–185CrossRefGoogle Scholar
  107. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44(1):246–249Google Scholar
  108. Sethunathan N, Yoshida T (1973) A Flavobacterium that degrades diazinon and parathion. Can J Microbiol 19:873–875CrossRefGoogle Scholar
  109. Sharmila Begum S, Arundhati A (2016) A study of bioremediation of methyl parathion in vitro using potential Pseudomonas sp. isolated from agricultural soil, Visakhapatnam, India. Int J Curr Microbiol App Sci 5:464–474CrossRefGoogle Scholar
  110. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110CrossRefGoogle Scholar
  111. Shen L, Wania F, Lei YD, Teixeira C, Muir DC, Bidleman TF (2005) Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America. Environ Sci Technol 39(2):409–420CrossRefGoogle Scholar
  112. Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471CrossRefGoogle Scholar
  113. Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206CrossRefGoogle Scholar
  114. Siripattanakul-Ratpukdi S, Vangnai AS, Sangthean P, Singkibut S (2015) Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environ Sci Pollut Res Int 22:320–328CrossRefGoogle Scholar
  115. Sobti RC, Krishan A, Pfaffenberger CD (1992) Cytokinetic and cytogenetic effects of some agricultural chemicals on human lymphoid cells in vitro: organophosphates. Mutat Res 102:89–102CrossRefGoogle Scholar
  116. Somara S, Siddavattam D (1995) Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int 36:627–631Google Scholar
  117. Srivastava MK, Raizada RB, Dikshith TS (1992) Fetotoxic response of technical quinalphos in rats. Vet Hum Toxicol 34(2):131–133Google Scholar
  118. Srivastava S, Narvi SS, Prasad SC (2011) Levels of select organophosphates in human colostrum and mature milk samples in rural region of Faizabad district, Uttar Pradesh, India. Hum Exp Toxicol 30:1458–1463CrossRefGoogle Scholar
  119. Tallur PN, Mulla SI, Megadi VB, Talwar MP, Ninnekar HZ (2015) Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1. Braz J Microbiol 46(3):667–672CrossRefGoogle Scholar
  120. Talwar MP, Ninnekar HZ (2015) Biodegradation of pesticide profenofos by the free and immobilized cells of Pseudoxanthomonas suwonensis strain HNM. J Basic Microbiol 55(9):1094–1103CrossRefGoogle Scholar
  121. Talwar MP, Mulla SI, Ninnekar HZ (2014) Biodegradation of organophosphate pesticide quinalphos by Ochrobactrum sp. strain HZM. J Appl Microbiol 117(5):1283–1292CrossRefGoogle Scholar
  122. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  123. Uzunhisarcikli M, Kalender Y, Dirican K, Kalender S, Ogutcu A, Buyukkomurcu F (2007) Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pestic Biochem Physiol 87:115–122CrossRefGoogle Scholar
  124. Vandekar M, Plestina R, Wilhelm K (1971) Toxicity of carbamates for mammals. Bull World Health Organ 44:241–249Google Scholar
  125. Kushwaha M, Verma S, Chatterjee S (2016) Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: a short review of its usage, toxicity, and biodegradation. J Environ Qual 45(5):1478–1489CrossRefGoogle Scholar
  126. Verma P, Verma P, Sagar R (2013) Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. For Ecol Manag 297:15–26CrossRefGoogle Scholar
  127. WHO (2004) Methyl parathion in drinking-water. WHO/SDE/WSH/03.04/106. http://www.who.int/water_sanitation_health/dwq/chemicals/methylparathion.pdf
  128. Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29(10):1469–1473CrossRefGoogle Scholar
  129. Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegrad 62:51–56CrossRefGoogle Scholar
  130. Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK (2014) Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresour Technol 165:265–269CrossRefGoogle Scholar
  131. Yadav M, Shukla AK, Srivastva N, Upadhyay SN, Dubey SK (2016) Utilization of microbial community potential for removal of chlorpyrifos: a review. Crit Rev Biotechnol 36(4):727–742Google Scholar
  132. Yali C, Xianen Z, Hong L, W Y XX (2002) Study on Pseudomonas sp. WBC-3 capable of complete degradation of methyl parathion. Wei Sheng Wu Xue Bao 42:490–497Google Scholar
  133. Yanez L, Ortiz-Perez D, Batres LE, Borja-Aburto VH, Diaz-Barriga F (2002) Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malarious areas of Mexico. Environ Res 88(3):174–181CrossRefGoogle Scholar
  134. Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251(1):67–73CrossRefGoogle Scholar
  135. Yang C, Liu N, Guo X, Qiao C (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125CrossRefGoogle Scholar
  136. Yashwantha B, Pamanji R, Venkateswara Rao J (2016) Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (Danio rerio) and its binding affinity towards hatching enzyme. Aquat Toxicol 180:155–163CrossRefGoogle Scholar
  137. Zhang R, Xu X, Chen W, Huang Q (2016) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 100(4):1987–1997.  https://doi.org/10.1007/s00253-015-7099-7 CrossRefGoogle Scholar
  138. Zhao G, Huang Q, Rong X, Cai P, Liang W, Dai K (2014) Interfacial interaction between methyl parathion-degrading bacteria and minerals is important in biodegradation. Biodegradation 25:1–9CrossRefGoogle Scholar
  139. Zheng Y, Long L, Fan Y, Gan J, Fang J, Jin W (2013) A review on the detoxification of organophosphorus compounds by microorganisms. Afr J Microbiol Res 7:2127–2134CrossRefGoogle Scholar
  140. Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925CrossRefGoogle Scholar
  141. Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2716–2719Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sikandar I. Mulla
    • 1
    • 2
  • Fuad Ameen
    • 3
  • Manjunatha P. Talwar
    • 1
  • Syed Ali Musstjab Akber Shah Eqani
    • 2
  • Ram Naresh Bharagava
    • 4
  • Gaurav Saxena
    • 4
  • Preeti N. Tallur
    • 5
  • Harichandra Z. Ninnekar
    • 1
  1. 1.Department of BiochemistryKarnatak UniversityDharwadIndia
  2. 2.CAS Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenPeople’s Republic of China
  3. 3.Department of Botany and Microbiology, Faculty of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM)Babasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  5. 5.Government Arts and Science CollegeKarwarIndia

Personalised recommendations