Advertisement

Rohon-Beard Neuron in Zebrafish

  • Kazutoyo Ogino
  • Hiromi Hirata
Chapter

Abstract

We experience various sensations through our skin. The sensations are received by distinct sensory channels that are expressed in the trigeminal ganglion (TG) or the dorsal root ganglion (DRG). TG neurons innervate the head skin, whereas DRG neurons innervate the skin of the trunk and limbs. In addition to these neuronal populations, larvae of anamniote vertebrates (lampreys, teleosts, and amphibians) have an additional sensory neuronal population that develops prior to functional maturation of DRG neurons, termed Rohon-Beard (RB) neurons. RB neurons innervate the trunk skin; thus, the TG and RB neurons are responsible for larval somatosensation. After the maturation of DRG neurons, the physiological roles of the RB neurons are replaced progressively by the DRG neurons. Studies of somatosensation in zebrafish have suggested that the transition from RB neurons to DRG neurons is completed within 5 days post fertilization. During this transition, the RB neurons undergo programmed cell death; thus, RB neurons have been considered to be a transient neuronal population. However, recent studies using zebrafish have indicated that some RB neurons survive for at least 2 weeks post-fertilization. These long-lived RBs are distinguished by Protein Kinase C-α (PKCα) expression and comprise <40% of the RB population although their physiological significance remains to be elucidated. Furthermore, RB neurons show diversity in gene expression other than the PKCα gene, implying that there are several different cell types in RB neurons. However, the physiological significance of this diversity also remains unclear. Visualization of the neural activity and functional manipulation could contribute to greater insight into RB neuron physiology. Many genetic tools that enable the visualization and manipulation of cell activity have been introduced to zebrafish biology. In addition, some enhancer or promoter sequences that induce gene expression in specific subtypes of RB neurons have been isolated. Using these molecular tools, researchers can investigate the physiology of distinct RB neurons. Here, We focus on RB neurons, presenting a current understanding of their development, diversity, and function and methods for their manipulation and visualization.

Keywords

Zebrafish Rohon-Beard neuron Somatosensory Touch-evoked response Reticulospinal neuron Mauthner cell 

References

  1. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840.  https://doi.org/10.1523/JNEUROSCI.2601-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andermann P, Ungos J, Raible DW (2002) Neurogenin1 defines zebrafish cranial sensory ganglia precursors. Dev Biol 251(1):45–58CrossRefGoogle Scholar
  3. Andersen EF, Asuri NS, Halloran MC (2011) In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development. Neural Dev 6(1):27CrossRefGoogle Scholar
  4. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci 99(20):12651–12656CrossRefGoogle Scholar
  5. Araki K, Nagata K (2011) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 3(11):a007526CrossRefGoogle Scholar
  6. Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci 106(42):17968–17973CrossRefGoogle Scholar
  7. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci 105(4):1255–1260CrossRefGoogle Scholar
  8. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208.  https://doi.org/10.1038/nature05910 CrossRefPubMedGoogle Scholar
  9. Becker T, Ostendorff HP, Bossenz M, Schlüter A, Becker CG, Peirano RI, Bach I (2002) Multiple functions of LIM domain-binding CLIM/NLI/Ldb cofactors during zebrafish development. Mech Dev 117(1):75–85CrossRefGoogle Scholar
  10. Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302(3):603–616CrossRefGoogle Scholar
  11. Blader P, Fischer N, Gradwohl G, Guillemont F, Strahle U (1997) The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124(22):4557–4569PubMedGoogle Scholar
  12. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268.  https://doi.org/10.1038/nn1525 CrossRefPubMedGoogle Scholar
  13. Brinkkoetter PT, Olivier P, Wu JS, Henderson S, Krofft RD, Pippin JW, Hockenbery D, Roberts JM, Shankland SJ (2009) Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J Clin Invest 119(10):3089–3101CrossRefGoogle Scholar
  14. Cantrell AR, Catterall WA (2001) Neuromodulation of Na+ channels: an unexpected form of cellular platicity. Nat Rev Neurosci 2(6):397CrossRefGoogle Scholar
  15. Carmean V, Ribera AB (2010) Genetic analysis of the touch response in zebrafish (Danio rerio). Int J Comp Psychol/ISCP Int Soc Comp Psychol Univ Calabria 23(1):91Google Scholar
  16. Carmean V, Yonkers MA, Tellez MB, Willer JR, Willer GB, Gregg RG, Geisler R, Neuhauss SC, Ribera AB (2015) Pigk mutation underlies macho behavior and affects Rohon-beard cell excitability. J Neurophysiol 114(2):1146–1157.  https://doi.org/10.1152/jn.00355.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300.  https://doi.org/10.1038/nature12354 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coen L, du Pasquier D, Le Mevel S, Brown S, Tata J, Mazabraud A, Demeneix BA (2001) Xenopus Bcl-XL selectively protects Rohon-beard neurons from metamorphic degeneration. Proc Natl Acad Sci 98(14):7869–7874CrossRefGoogle Scholar
  19. Cole LK, Ross LS (2001) Apoptosis in the developing zebrafish embryo. Dev Biol 240(1):123–142.  https://doi.org/10.1006/dbio.2001.0432 CrossRefPubMedGoogle Scholar
  20. Cornell RA, Eisen JS (2000) Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate. Development 127(13):2873–2882PubMedGoogle Scholar
  21. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60CrossRefGoogle Scholar
  22. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49CrossRefGoogle Scholar
  23. Darom A, Bening-Abu-Shach U, Broday L (2010) RNF-121 is an endoplasmic reticulum-membrane E3 ubiquitin ligase involved in the regulation of β-integrin. Mol Biol Cell 21(11):1788–1798CrossRefGoogle Scholar
  24. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161.  https://doi.org/10.1146/annurev.neuro.29.051605.112958 CrossRefPubMedGoogle Scholar
  25. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18(15):1133–1137.  https://doi.org/10.1016/j.cub.2008.06.077 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Downes GB, Granato M (2006) Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J Neurobiol 66(5):437–451.  https://doi.org/10.1002/neu.20226 CrossRefPubMedGoogle Scholar
  27. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6(12):883–889.  https://doi.org/10.1038/nmeth.1399 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) piezo2b regulates vertebrate light touch response. J Neurosci 33(43):17089–17094.  https://doi.org/10.1523/JNEUROSCI.0522-13.2013 CrossRefPubMedGoogle Scholar
  29. Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, Rosen J, Yang CT, Looger LL, Ahrens MB (2014) Mapping brain activity at scale with cluster computing. Nat Methods 11(9):941–950.  https://doi.org/10.1038/nmeth.3041 CrossRefPubMedGoogle Scholar
  30. Fujita N, Saito R, Watanabe K, Nagata S (2000) An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system. Dev Biol 221(2):308–320CrossRefGoogle Scholar
  31. Gau P, Poon J, Ufret-Vincenty C, Snelson CD, Gordon SE, Raible DW, Dhaka A (2013) The zebrafish ortholog of TRPV1 is required for heat-induced locomotion. J Neurosci 33(12):5249–5260.  https://doi.org/10.1523/JNEUROSCI.5403-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Geffeney SL, Goodman MB (2012) How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 74(4):609–619.  https://doi.org/10.1016/j.neuron.2012.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gleason MR, Higashijima S-i, Dallman J, Liu K, Mandel G, Fetcho JR (2003) Translocation of CaM kinase II to synaptic sites in vivo. Nat Neurosci 6(3):217–218CrossRefGoogle Scholar
  34. Gracheva EO, Bagriantsev SN (2015) Evolutionary adaptation to thermosensation. Curr Opin Neurobiol 34:67–73CrossRefGoogle Scholar
  35. Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27(52):14231–14238.  https://doi.org/10.1523/JNEUROSCI.3578-07.2007 CrossRefPubMedGoogle Scholar
  36. Granato M, Van Eeden F, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg C-P, Jiang Y-J (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123(1):399–413PubMedGoogle Scholar
  37. Haddon C, Smithers L, Schneider-Maunoury S, Coche T, Henrique D, Lewis J (1998) Multiple delta genes and lateral inhibition in zebrafish primary neurogenesis. Development 125(3):359–370PubMedGoogle Scholar
  38. Hale ME, Ritter DA, Fetcho JR (2001) A confocal study of spinal interneurons in living larval zebrafish. J Comp Neurol 437(1):1–16CrossRefGoogle Scholar
  39. Halloran MC, Severance SM, Yee CS, Gemza DL, Raper JA, Kuwada JY (1999) Analysis of a zebrafish semaphorin reveals potential functions in vivo. Dev Dyn 214(1):13–25CrossRefGoogle Scholar
  40. Hernandez-Lagunas L, Choi IF, Kaji T, Simpson P, Hershey C, Zhou Y, Zon L, Mercola M, Artinger KB (2005) Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev Biol 278(2):347–357CrossRefGoogle Scholar
  41. Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225(4):422–433CrossRefGoogle Scholar
  42. Kanungo J, Li BS, Zheng Y, Pant HC (2006) Cyclin-dependent kinase 5 influences Rohon-beard neuron survival in zebrafish. J Neurochem 99(1):251–259.  https://doi.org/10.1111/j.1471-4159.2006.04114.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kanungo J, Zheng YL, Mishra B, Pant HC (2009) Zebrafish Rohon-beard neuron development: cdk5 in the midst. Neurochem Res 34(6):1129–1137.  https://doi.org/10.1007/s11064-008-9885-4 CrossRefPubMedGoogle Scholar
  44. Kastenhuber E, Gesemann M, Mickoleit M, Neuhauss SC (2013) Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev Dyn 242(11):1236–1249CrossRefGoogle Scholar
  45. Kim CK, Miri A, Leung LC, Berndt A, Mourrain P, Tank DW, Burdine RD (2014) Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping. Front Neural Circuits 8:138.  https://doi.org/10.3389/fncir.2014.00138 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310CrossRefGoogle Scholar
  47. Knogler LD, Drapeau P (2014) Sensory gating of an embryonic zebrafish interneuron during spontaneous motor behaviors. Front Neural Circuits 8:121.  https://doi.org/10.3389/fncir.2014.00121 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kohashi T, Oda Y (2008) Initiation of Mauthner-or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J Neurosci 28(42):10641–10653CrossRefGoogle Scholar
  49. Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28.  https://doi.org/10.1016/j.neuron.2005.05.019 CrossRefPubMedGoogle Scholar
  50. Kucenas S, Li Z, Cox JA, Egan TM, Voigt MM (2003) Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience 121(4):935–945.  https://doi.org/10.1016/s0306-4522(03)00566-9 CrossRefPubMedGoogle Scholar
  51. Kuwada JY, Bernhardt RR, Nguyen N (1990) Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol 302(3):617–628CrossRefGoogle Scholar
  52. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269(1):1–20CrossRefGoogle Scholar
  53. Lee K, Robert K, Eaton RC (1991) Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J Comp Neurol 304(1):34–52CrossRefGoogle Scholar
  54. Lewis KE, Eisen JS (2003) From cells to circuits: development of the zebrafish spinal cord. Prog Neurobiol 69(6):419–449.  https://doi.org/10.1016/s0301-0082(03)00052-2 CrossRefPubMedGoogle Scholar
  55. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26(1):83–102.  https://doi.org/10.1038/cr.2015.149 CrossRefPubMedGoogle Scholar
  56. Liu KS, Fetcho JR (1999) Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23(2):325–335CrossRefGoogle Scholar
  57. Liu Y, Halloran MC (2005) Central and peripheral axon branches from one neuron are guided differentially by Semaphorin3D and transient axonal glycoprotein-1. J Neurosci 25(45):10556–10563.  https://doi.org/10.1523/JNEUROSCI.2710-05.2005 CrossRefPubMedGoogle Scholar
  58. Low SE, Ryan J, Sprague SM, Hirata H, Cui WW, Zhou W, Hume RI, Kuwada JY, Saint-Amant L (2010a) Touche is required for touch-evoked generator potentials within vertebrate sensory neurons. J Neurosci 30(28):9359–9367.  https://doi.org/10.1523/JNEUROSCI.1639-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Low SE, Zhou W, Choong I, Saint-Amant L, Sprague SM, Hirata H, Cui WW, Hume RI, Kuwada JY (2010b) Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation. Dev Neurobiol 70(7):508–522.  https://doi.org/10.1002/dneu.20791 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Low SE, Amburgey K, Horstick E, Linsley J, Sprague SM, Cui WW, Zhou W, Hirata H, Saint-Amant L, Hume RI, Kuwada JY (2011) TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 31(32):11633–11644.  https://doi.org/10.1523/JNEUROSCI.4950-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Low SE, Woods IG, Lachance M, Ryan J, Schier AF, Saint-Amant L (2012) Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b. J Neurophysiol 108(1):148–159.  https://doi.org/10.1152/jn.00839.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445(7130):858–865.  https://doi.org/10.1038/nature05662 CrossRefPubMedGoogle Scholar
  63. Marsden KC, Granato M (2015) In vivo ca(2+) imaging reveals that decreased dendritic excitability drives startle habituation. Cell Rep 13(9):1733–1740.  https://doi.org/10.1016/j.celrep.2015.10.060 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Marusich MF, Furneaux HM, Henion PD, Weston JA (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. Dev Neurobiol 25(2):143–155CrossRefGoogle Scholar
  65. McCauley DW, Docker MF, Whyard S, Li W (2015) Lampreys as diverse model organisms in the genomics era. Bioscience 65(11):1046–1056CrossRefGoogle Scholar
  66. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52CrossRefGoogle Scholar
  67. Metcalfe WK, Myers PZ, Trevarrow B, Bass MB, Kimmel CB (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110(2):491–504PubMedGoogle Scholar
  68. Miyashita T, Yeo SY, Hirate Y, Segawa H, Wada H, Little MH, Yamada T, Takahashi N, Okamoto H (2004) PlexinA4 is necessary as a downstream target of Islet2 to mediate slit signaling for promotion of sensory axon branching. Development 131(15):3705–3715.  https://doi.org/10.1242/dev.01228 CrossRefPubMedGoogle Scholar
  69. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887CrossRefGoogle Scholar
  70. Muto A, Ohkura M, Kotani T, Higashijima S, Nakai J, Kawakami K (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proc Natl Acad Sci U S A 108(13):5425–5430.  https://doi.org/10.1073/pnas.1000887108 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Muto A, Ohkura M, Abe G, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23(4):307–311.  https://doi.org/10.1016/j.cub.2012.12.040 CrossRefPubMedGoogle Scholar
  72. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19(2):137CrossRefGoogle Scholar
  73. Nakano Y, Fujita M, Ogino K, Saint-Amant L, Kinoshita T, Oda Y, Hirata H (2010) Biogenesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation. Development 137(10):1689–1698.  https://doi.org/10.1242/dev.047464 CrossRefPubMedGoogle Scholar
  74. Nakayama H, Oda Y (2004) Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J Neurosci 24(13):3199–3209.  https://doi.org/10.1523/JNEUROSCI.4419-03.2004 CrossRefPubMedGoogle Scholar
  75. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835–843CrossRefGoogle Scholar
  76. Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by abmp2b/swirlPathway of genes. Dev Biol 199(1):93–110CrossRefGoogle Scholar
  77. Nguyen VH, Trout J, Connors SA, Andermann P, Weinberg E, Mullins MC (2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127(6):1209–1220PubMedGoogle Scholar
  78. Nikolaou N, Lowe AS, Walker AS, Abbas F, Hunter PR, Thompson ID, Meyer MP (2012) Parametric functional maps of visual inputs to the tectum. Neuron 76(2):317–324.  https://doi.org/10.1016/j.neuron.2012.08.040 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Nissanov J, Eaton RC, DiDomenico R (1990) The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res 517(1):88–98CrossRefGoogle Scholar
  80. Novak AE, Taylor AD, Pineda RH, Lasda EL, Wright MA, Ribera AB (2006) Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev Dyn 235(7):1962–1973.  https://doi.org/10.1002/dvdy.20811 CrossRefPubMedGoogle Scholar
  81. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123(2):103–113CrossRefGoogle Scholar
  82. Ogino K, Low SE, Yamada K, Saint-Amant L, Zhou W, Muto A, Asakawa K, Nakai J, Kawakami K, Kuwada JY, Hirata H (2015) RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels. Proc Natl Acad Sci U S A 112(9):2859–2864.  https://doi.org/10.1073/pnas.1414002112 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ohkura M, Matsuzaki M, Kasai H, Imoto K, Nakai J (2005) Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77(18):5861–5869CrossRefGoogle Scholar
  84. O’Malley DM, Kao Y-H, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17(6):1145–1155CrossRefGoogle Scholar
  85. Palanca AM, Lee SL, Yee LE, Joe-Wong C, Trinh le A, Hiroyasu E, Husain M, Fraser SE, Pellegrini M, Sagasti A (2013) New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev Neurobiol 73(2):152–167.  https://doi.org/10.1002/dneu.22049 CrossRefPubMedGoogle Scholar
  86. Park YU, Jeong J, Lee H, Mun JY, Kim JH, Lee JS, Nguyen MD, Han SS, Suh PG, Park SK (2010) Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci U S A 107(41):17785–17790.  https://doi.org/10.1073/pnas.1004361107 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Park B-Y, Hong C-S, Weaver JR, Rosocha EM, Saint-Jeannet J-P (2012) Xaml1/Runx1 is required for the specification of Rohon-beard sensory neurons in Xenopus. Dev Biol 362(1):65–75CrossRefGoogle Scholar
  88. Patten SA, Sihra RK, Dhami KS, Coutts CA, Ali DW (2007) Differential expression of PKC isoforms in developing zebrafish. Int J Dev Neurosci 25(3):155–164.  https://doi.org/10.1016/j.ijdevneu.2007.02.003 CrossRefPubMedGoogle Scholar
  89. Patterson KD, Krieg PA (1999) Hox11-family genes XHox11 and XHox11L2 in Xenopus: XHox11L2 expression is restricted to a subset of the primary sensory neurons. Dev Dyn 214(1):34–43CrossRefGoogle Scholar
  90. Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A (2015) Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 10(12):2083–2095.  https://doi.org/10.1016/j.celrep.2015.02.065 CrossRefPubMedGoogle Scholar
  91. Pietri T, Manalo E, Ryan J, Saint-Amant L, Washbourne P (2009) Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos. Dev Neurobiol 69(12):780–795.  https://doi.org/10.1002/dneu.20741 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pineda RH, Svoboda KR, Wright MA, Taylor AD, Novak AE, Gamse JT, Eisen JS, Ribera AB (2006) Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development. Development 133(19):3827–3836.  https://doi.org/10.1242/dev.02559 CrossRefPubMedGoogle Scholar
  93. Ponomareva OY, Holmen IC, Sperry AJ, Eliceiri KW, Halloran MC (2014) Calsyntenin-1 regulates axon branching and endosomal trafficking during sensory neuron development in vivo. J Neurosci 34(28):9235–9248.  https://doi.org/10.1523/JNEUROSCI.0561-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Prober DA, Zimmerman S, Myers BR, McDermott BM Jr, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28(40):10102–10110.  https://doi.org/10.1523/JNEUROSCI.2740-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rasband MN (2010) The axon initial segment and the maintenance of neuronal polarity. Nat Rev Neurosci 11(8):552CrossRefGoogle Scholar
  96. Reyes R, Haendel M, Grant D, Melancon E, Eisen JS (2004) Slow degeneration of zebrafish Rohon-beard neurons during programmed cell death. Dev Dyn 229(1):30–41.  https://doi.org/10.1002/dvdy.10488 CrossRefPubMedGoogle Scholar
  97. Ribera AB, Nüsslein-Volhard C (1998) Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci 18(22):9181–9191CrossRefGoogle Scholar
  98. Roberts A (2000) Early functional organization of spinal neurons in developing lower vertebrates. Brain Res Bull 53(5):585–593CrossRefGoogle Scholar
  99. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452(5):486–500.  https://doi.org/10.1007/s00424-006-0073-6 CrossRefPubMedGoogle Scholar
  100. Rossi CC, Hernandez-Lagunas L, Zhang C, Choi IF, Kwok L, Klymkowsky M, Artinger KB (2008) Rohon-beard sensory neurons are induced by BMP4 expressing non-neural ectoderm in Xenopus laevis. Dev Biol 314(2):351–361CrossRefGoogle Scholar
  101. Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37(4):622–632CrossRefGoogle Scholar
  102. Saint-Amant L, Drapeau P (2001) Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31(6):1035–1046CrossRefGoogle Scholar
  103. Saito S, Shingai R (2006) Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genomics 27(3):219–230CrossRefGoogle Scholar
  104. Segawa H, Miyashita T, Hirate Y, Higashijima S-i, Chino N, Uyemura K, Kikuchi Y, Okamoto H (2001) Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron 30(2):423–436CrossRefGoogle Scholar
  105. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13(6):759–766.  https://doi.org/10.1038/nn.2557 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Higashijima S-i, Masino MA, Mandel G, Fetcho JR (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90(6):3986–3997CrossRefGoogle Scholar
  107. Slatter CA, Kanji H, Coutts CA, Ali DW (2005) Expression of PKC in the developing zebrafish, Danio rerio. J Neurobiol 62(4):425–438.  https://doi.org/10.1002/neu.20110 CrossRefPubMedGoogle Scholar
  108. Svoboda KR, Linares AE, Ribera AB (2001) Activity regulates programmed cell death of zebrafish Rohon-beard neurons. Development 128(18):3511–3520PubMedGoogle Scholar
  109. Tallini YN, Ohkura M, Choi B-R, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin H-B (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103(12):4753–4758CrossRefGoogle Scholar
  110. Tanaka H, Nojima Y, Shoji W, Sato M, Nakayama R, Ohshima T, Okamoto H (2011) Islet1 selectively promotes peripheral axon outgrowth in Rohon-Beard primary sensory neurons. Dev Dyn 240(1):9–22CrossRefGoogle Scholar
  111. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6(12):875–881CrossRefGoogle Scholar
  112. Tsai FC, Seki A, Yang HW, Hayer A, Carrasco S, Malmersjo S, Meyer T (2014) A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol 16(2):133–144.  https://doi.org/10.1038/ncb2906 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Umeda K, Shoji W (2017) From neuron to behavior: sensory-motor coordination of zebrafish turning behavior. Develop Growth Differ 59(3):107–114.  https://doi.org/10.1111/dgd.12345 CrossRefGoogle Scholar
  114. Umeda K, Ishizuka T, Yawo H, Shoji W (2016) Position- and quantity-dependent responses in zebrafish turning behavior. Sci Rep 6:27888.  https://doi.org/10.1038/srep27888 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Von Niederhausern V, Kastenhuber E, Stauble A, Gesemann M, Neuhauss SC (2013) Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Dev Dyn 242(12):1427–1441.  https://doi.org/10.1002/dvdy.24041 CrossRefGoogle Scholar
  116. Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, Oberwinkler J, Vennekens R, Gudermann T, Nilius B, Voets T (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494.  https://doi.org/10.1016/j.neuron.2011.02.051 CrossRefPubMedGoogle Scholar
  117. Walker AS, Burrone J, Meyer MP (2013) Functional imaging in the zebrafish retinotectal system using RGECO. Front Neural Circuits 7:34.  https://doi.org/10.3389/fncir.2013.00034 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wang H, Sugiyama Y, Hikima T, Sugano E, Tomita H, Takahashi T, Ishizuka T, Yawo H (2009) Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J Biol Chem 284(9):5685–5696CrossRefGoogle Scholar
  119. Wang F, Wolfson SN, Gharib A, Sagasti A (2012) LAR receptor tyrosine phosphatases and HSPGs guide peripheral sensory axons to the skin. Curr Biol 22(5):373–382.  https://doi.org/10.1016/j.cub.2012.01.040 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Warp E, Agarwal G, Wyart C, Friedmann D, Oldfield CS, Conner A, Del Bene F, Arrenberg AB, Baier H, Isacoff EY (2012) Emergence of patterned activity in the developing zebrafish spinal cord. Curr Biol 22(2):93–102.  https://doi.org/10.1016/j.cub.2011.12.002 CrossRefPubMedGoogle Scholar
  121. Warren JT, Chandrasekhar A, Kanki JP, Rangarajan R, Furley AJ, Kuwada JY (1999) Molecular cloning and developmental expression of a zebrafish axonal glycoprotein similar to TAG-1. Mech Dev 80(2):197–201CrossRefGoogle Scholar
  122. Weiss SA, Zottoli SJ, Do SC, Faber DS, Preuss T (2006) Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus). J Exp Biol 209(23):4788–4801CrossRefGoogle Scholar
  123. Williams JA, Barrios A, Gatchalian C, Rubin L, Wilson SW, Holder N (2000) Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev Biol 226(2):220–230.  https://doi.org/10.1006/dbio.2000.9860 CrossRefPubMedGoogle Scholar
  124. Wittbrodt J, Shima A, Schartl M (2002) Medaka—a model organism from the far east. Nat Rev Genet 3(1):53CrossRefGoogle Scholar
  125. Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K, Augustine GJ, Feng G (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36(1–4):141–154.  https://doi.org/10.1007/s11068-008-9034-7 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded ca(2)(+) indicators. Science 333(6051):1888–1891.  https://doi.org/10.1126/science.1208592 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biological Science, College of Science and EngineeringAoyama Gakuin UniversitySagamiharaJapan

Personalised recommendations