Advertisement

Medaka Fish Model of Parkinson’s Disease

  • Norihito Uemura
  • Ryosuke Takahashi
Chapter

Abstract

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. PD is pathologically characterized by dopamine (DA) neuron loss in the substantia nigra pars compacta (SNpc), accompanied by α-synuclein aggregates known as Lewy bodies. Animal models are indispensable for elucidating the pathological mechanisms of diseases and developing new treatments. However, a lack of animal model that faithfully replicates PD has been a major barrier to overcoming this disease. Here, we present novel animal models of PD in medaka fish. Teleost fish have DA neurons that correspond to those observed in humans within the SNpc, allowing us to evaluate their phenotypes as PD models. We have developed several animal models of PD in medaka fish via toxin or genetic modification. In our models, we found that dopaminergic neurotoxins caused DA neuron loss and a reduction of spontaneous swimming movement, suggesting the potential utility of medaka fish as an animal model of PD. Administration of proteasome or lysosome inhibitors resulted in DA neuron loss accompanied by ubiquitin-positive cytosolic inclusion bodies, suggesting that DA neurons are vulnerable to proteasome or lysosome dysfunction. Several lines of medaka fish with mutations in the causative genes of rare familial PD demonstrated that mitochondrial dysfunction and impairment of the autophagy–lysosome pathway are involved in the development of PD. In this review, we outline PD medaka models we have developed and discuss future perspectives on medaka fish as a PD model.

Keywords

Parkinson’s disease Dopamine neuron Animal model Neurotoxin Genetics Medaka 

Notes

Acknowledgment

These works were mainly supported by the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST); by Grant-in-Aid for Specially Promoted Research and Scientific Research on Innovative Areas “Brain Environment” from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and by JSPS KAKENHI Grant Number JP15H02540. We thank Dr. Hideaki Matsui, who conducted many of the studies introduced here. We also thank Drs. Masato Kinoshita, Tomoko Ishikawa-Fujiwara, Takeshi Todo, and Shunichi Takeda for their excellent collaborations.

References

  1. Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202.  https://doi.org/10.1016/j.tins.2007.03.006 PubMed PMID: 17408759CrossRefPubMedGoogle Scholar
  2. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135–172 Epub 2001/06/19. PubMed PMID: 11403877CrossRefPubMedGoogle Scholar
  3. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211 Epub 2002/12/25. PubMed PMID: 12498954CrossRefGoogle Scholar
  4. Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ (2012) Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet 21(12):2646–2650.  https://doi.org/10.1093/hmg/dds089 PubMed PMID: 22388936; PubMed Central PMCID: PMCPMC3363329CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S et al (2010) The risk of Parkinson’s disease in type 1 Gaucher disease. J Inherit Metab Dis. 33(2):167–173. Epub 2010/02/24.  https://doi.org/10.1007/s10545-010-9055-0 PubMed PMID: 20177787CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166.  https://doi.org/10.1038/nature04779 PubMed PMID: 16672981CrossRefPubMedGoogle Scholar
  7. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661 Epub 2010/06/16. doi: S0896-6273(10)00327-2 [pii]1016/j.neuron.2010.04.034 [doi]. PubMed PMID: 20547124CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535.  https://doi.org/10.1016/s1474-4422(06)70471-9 CrossRefGoogle Scholar
  9. Del Tredici K, Braak H (2013) Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia. J Neurol Neurosurg Psychiatry 84(7):774–783.  https://doi.org/10.1136/jnnp-2011-301817 PubMed PMID: 23064099CrossRefPubMedGoogle Scholar
  10. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8(12):1150–1157.  https://doi.org/10.1016/s1474-4422(09)70238-8 CrossRefPubMedGoogle Scholar
  11. Eblan MJ, Goker-Alpan O, Sidransky E (2005) Perinatal lethal Gaucher disease: a distinct phenotype along the neuronopathic continuum. Fetal Pediatr Pathol 24(4–5):205–222 Epub 2006/01/07. doi: JW22511415K11678 [pii] 49.1080/15227950500405296 [doi]. PubMed PMID: 16396828CrossRefPubMedGoogle Scholar
  12. Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 124(2):153–172. Epub 2012/06/30.  https://doi.org/10.1007/s00401-012-1004-6. PubMed PMID: 22744791CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gegg ME, Burke D, Heales SJ, Cooper JM, Hardy J, Wood NW et al (2012) Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 72(3):455–463. Epub 2012/10/05.  https://doi.org/10.1002/ana.23614 [doi]. PubMed PMID: 23034917CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ et al (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41(3):308–315.  https://doi.org/10.1038/ng.300 PubMed PMID: 19182805; PubMed Central PMCID: PMCPMC2683786CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E (2004) Parkinsonism among Gaucher disease carriers. J Med Genet 41(12):937–940.  https://doi.org/10.1136/jmg.2004.024455 PubMed PMID: 15591280; PubMed Central PMCID: PMCPMC1735652CrossRefPubMedPubMedCentralGoogle Scholar
  16. Grabowski GA (2008) Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 372(9645):1263–1271 Epub 2008/12/20. doi: S0140-6736(08)61522-6 [pii] 45.1016/S0140-6736(08)61522-6 [doi]. PubMed PMID: 19094956CrossRefGoogle Scholar
  17. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912.  https://doi.org/10.1016/s0140-6736(14)61393-3 CrossRefGoogle Scholar
  18. Kastenhuber E, Kratochwil CF, Ryu S, Schweitzer J, Driever W (2010) Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 518(4):439–458.  https://doi.org/10.1002/cne.22214 PubMed PMID: 20017210; PubMed Central PMCID: PMCPMC2841826CrossRefPubMedGoogle Scholar
  19. Kett LR, Stiller B, Bernath MM, Tasset I, Blesa J, Jackson-Lewis V et al (2015) alpha-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci 35(14):5724–5742.  https://doi.org/10.1523/JNEUROSCI.0632-14.2015 PubMed PMID: 25855184; PubMed Central PMCID: PMCPMC4388928CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392(6676):605–608. Epub 1998/04/29.  https://doi.org/10.1038/33416. PubMed PMID: 9560156CrossRefPubMedGoogle Scholar
  21. Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111(3):696–702.  https://doi.org/10.1111/j.1471-4159.2009.06350.x PubMed PMID: 19694908; PubMed Central PMCID: PMC2952933CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314.  https://doi.org/10.1038/nature14893 PubMed PMID: 26266977; PubMed Central PMCID: PMCPMC5018156CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 342(21):1560–1567. Epub 2000/05/29.  https://doi.org/10.1056/nejm200005253422103. PubMed PMID: 10824074CrossRefPubMedGoogle Scholar
  24. Matsui H, Taniguchi Y, Inoue H, Uemura K, Takeda S, Takahashi R (2009) A chemical neurotoxin, MPTP induces Parkinson’s disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish. Neurosci Res. 65(3):263–271.  https://doi.org/10.1016/j.neures.2009.07.010. PubMed PMID: 19665499CrossRefPubMedGoogle Scholar
  25. Matsui H, Ito H, Taniguchi Y, Inoue H, Takeda S, Takahashi R (2010a) Proteasome inhibition in medaka brain induces the features of Parkinson’s disease. J Neurochem 115(1):178–187. Epub 2010/07/24. doi: JNC6918 [pii] 1111/j.1471-4159.2010.06918.x [doi]. PubMed PMID: 20649841Google Scholar
  26. Matsui H, Ito H, Taniguchi Y, Takeda S, Takahashi R (2010b) Ammonium chloride and tunicamycin are novel toxins for dopaminergic neurons and induce Parkinson’s disease-like phenotypes in medaka fish. J Neurochem. 115(5):1150–1160.  https://doi.org/10.1111/j.1471-4159.2010.07012.x. PubMed PMID: 21219329CrossRefPubMedGoogle Scholar
  27. Matsui H, Taniguchi Y, Inoue H, Kobayashi Y, Sakaki Y, Toyoda A et al (2010c) Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neurosci Res 66(2):151–161. Epub 2009/11/10. doi: S0168-0102(09)02015-X [pii]  https://doi.org/10.1016/j.neures.2009.33.010 [doi]. PubMed PMID: 19895857
  28. Matsui H, Gavinio R, Asano T, Uemura N, Ito H, Taniguchi Y et al (2013a) PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet 22(12):2423–2434. Epub 2013/03/02. doi: ddt095 [pii] 35.1093/hmg/ddt095 [doi]. PubMed PMID: 23449626Google Scholar
  29. Matsui H, Sato F, Sato S, Koike M, Taruno Y, Saiki S et al (2013b) ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprint-like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Lett 587(9):1316–1325. Epub 2013/03/19. doi: S0014-5793(13)00192-0 [pii] 42.1016/j.febslet.2013.02.046 [doi]. PubMed PMID: 23499937Google Scholar
  30. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52. Epub 2011/06/28. doi: S0092-8674(11)00601-5 [pii] 54.1016/j.cell.2011.06.001 [doi]. PubMed PMID: 21700325Google Scholar
  31. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8(1):e1000298. doi:  https://doi.org/10.1371/journal.pbio.1000298. PubMed PMID: 20126261; PubMed Central PMCID: PMCPMC2811155CrossRefPubMedPubMedCentralGoogle Scholar
  32. Neudorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E et al (1996) Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM : Monthly J Assoc Physicians 89(9):691–694. Epub 1996/09/01. PubMed PMID: 8917744.CrossRefPubMedGoogle Scholar
  33. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 441(7097):1157–1161.  https://doi.org/10.1038/nature04788. PubMed PMID: 16672980CrossRefPubMedGoogle Scholar
  34. Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW (2013) Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 12(7):716–726.  https://doi.org/10.1016/s1474-4422(13)70123-6 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R et al (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76(5):1265–1274. Epub 2001/03/10 PubMed PMID: 11238711CrossRefPubMedGoogle Scholar
  36. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 38(10):1184–1191.  https://doi.org/10.1038/ng1884. PubMed PMID: 16964263CrossRefPubMedGoogle Scholar
  37. Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889(1–2):316–330. Epub 2001/02/13. doi: S0006-8993(00)03174-7 [pii]. PubMed PMID: 11166725Google Scholar
  38. Rink E, Wullimann MF (2002) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 137(1):89–100. Epub 2002/07/20. PubMed PMID: 12128258CrossRefPubMedGoogle Scholar
  39. Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J et al (2010) PINK1-linked parkinsonism is associated with Lewy body pathology. Brain. 133(Pt 4):1128–1142.  https://doi.org/10.1093/brain/awq051. PubMed PMID: 20356854CrossRefPubMedGoogle Scholar
  40. Sardi SP, Clarke J, Viel C, Chan M, Tamsett TJ, Treleaven CM et al (2013) Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci U S A. 110(9):3537–3542. doi:  https://doi.org/10.1073/pnas.1220464110. PubMed PMID: 23297226; PubMed Central PMCID: PMCPMC3587272CrossRefGoogle Scholar
  41. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 41(12):1303–1307.  https://doi.org/10.1038/ng.485 PubMed PMID: 19915576CrossRefPubMedGoogle Scholar
  42. Schneider SA, Alcalay RN (2017) Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov Disord..32(11):1504–1523.  https://doi.org/10.1002/mds.27193. PubMed PMID: 29124790CrossRefPubMedGoogle Scholar
  43. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. New Engl J Med 361(17):1651–1661. Epub 2009/10/23. doi: 361/17/1651 [pii] 1056/NEJMoa0901281 [doi]. PubMed PMID: 19846850Google Scholar
  44. Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W (2011) Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat Commun. 2:171.  https://doi.org/10.1038/ncomms1171. PubMed PMID: 21266970; PubMed Central PMCID: PMCPMC3105308
  45. Tsunemi T, Krainc D (2014) Zn(2)(+) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 23(11):2791–2801.  https://doi.org/10.1093/hmg/ddt572. PubMed PMID: 24334770; PubMed Central PMCID: PMCPMC4014186CrossRefPubMedPubMedCentralGoogle Scholar
  46. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa-Fujiwara T, Matsui H et al (2015) Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 11(4):e1005065.  https://doi.org/10.1371/journal.pgen.1005065. PubMed PMID: 25835295; PubMed Central PMCID: PMCPMC4383526CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci ;4(5):365–375. doi:  https://doi.org/10.1038/nrn1100. PubMed PMID: 12728264CrossRefPubMedGoogle Scholar
  48. Williams DR, Hadeed A, al-Din AS, Wreikat AL, Lees AJ (2005) Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord. 20(10):1264–1271.  https://doi.org/10.1002/mds.20511. PubMed PMID: 15986421CrossRefPubMedGoogle Scholar
  49. Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK et al (2004) Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 82(3):192–207. Epub 2004/07/06.  https://doi.org/10.1016/j.ymgme.2004.04.011 [doi] S1096719204001179 [pii]. PubMed PMID: 15234332CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of NeurologyKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations