Skip to main content

Zebrafish Wnt/β-Catenin Signaling Reporters Facilitate Understanding of In Vivo Dynamic Regulation and Discovery of Therapeutic Agents

  • Chapter
  • First Online:
Zebrafish, Medaka, and Other Small Fishes
  • 654 Accesses

Abstract

Wnt/β-catenin signaling plays multiple roles in embryogenesis, organogenesis, and adult tissue homeostasis, and its dysregulation is linked to numerous human diseases such as cancer. Although strict spatiotemporal regulation must support the multi-functionality of Wnt/β-catenin signaling, detailed mechanisms remain unclear. In addition, Wnt/β-catenin signaling is a potential drug target candidate and several inhibitors have been identified by in vitro screening, but none have yet been incorporated into clinical practice. Recent studies using reporter zebrafish lines have gradually improved our understanding of in vivo dynamic regulation of Wnt/β-catenin signaling and have facilitated the discovery of new chemicals that can reduce Wnt/β-catenin signaling and cancer cell viability with few side effects. Here, we describe several new mechanisms supporting the spatiotemporal regulation of Wnt/β-catenin signaling and new small molecule inhibitors, discovered using zebrafish reporters. In addition, we discuss the potential of zebrafish signaling reporters in both developmental biology and pharmaceutical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arce L, Pate KT, Waterman ML (2009) Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Burcklé C, Gaudé HM, Vesque C et al (2011) Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 20(13):2611–2627

    Article  PubMed  Google Scholar 

  • Casari A, Schiavone M, Facchinello N et al (2014) A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Dev Biol 396(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Dodge ME, Tang W et al (2009) Small molecule-mediated disruption of Wnt-de pendent signaling in tissue regeneration and cancer. Nat Chem Biol 5(2):100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling in development and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25(57):7545–7553

    Article  PubMed  Google Scholar 

  • Delgado ER, Yang J, So J et al (2014) Identification and characterization of a novel small molecule inhibitor of β-catenin signaling. Am J Pathol 184(7):2111–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deyts C, Candal E, Joly JS, Bourrat F (2005) An automated in situ hybridization screen in the Medaka to identify unknown neural genes. Dev Dyn 234(3):698–708

    Article  CAS  PubMed  Google Scholar 

  • Dorsky RI, Scheldahl LC, Moon RT (2002) A transgenic Lef1/β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Goessling W, North TE, Loewer S et al (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6):1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399(6738):798–802

    Article  CAS  PubMed  Google Scholar 

  • Ishitani T, Matsumoto K, Chitnis AB, Itoh M (2005) Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol 27(11):1106–1112

    Article  Google Scholar 

  • Kizil C, Küchler B, Yan JJ et al (2014) Simplet/Fam53b is required for Wnt signal trans- duction by regulating β-catenin nuclear localization. Development 141(18):3529–3539

    Article  CAS  PubMed  Google Scholar 

  • Laux DW, Febbo JA, Roman BL (2011) Dynamic analysis of BMP-responsive smad activ- ity in live zebrafish embryos. Dev Dyn 240(3):682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM (2009) Homeodomain-interacting pro- tein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Development 136(2):241–252

    Article  CAS  PubMed  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Meneghini MD, Ishitani T, Carter JC et al (1999) MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399(6738):793–797

    Article  CAS  PubMed  Google Scholar 

  • Moro E, Ozhan-Kizil G, Mongera A et al (2012) In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 366(2):327–340

    Article  CAS  PubMed  Google Scholar 

  • Ohishi K, Toume K, Arai MA et al (2015) 9-Hydroxycanthin-6-one, a β-Carboline alkaloid from Eurycoma longifolia, is the first Wnt signal inhibitor through activation of glycogen synthase kinase 3β without depending on casein kinase 1α. J Nat Prod 78(5):1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Ota S, Ishitani S, Shimizu N et al (2012) NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO J 31(8):1904–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posokhova E, Shukla A, Seaman S et al (2015) GPR124 functions as a WNT7-specific co- activator of canonical β-catenin signaling. Cell Rep 10(2):123–130

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Gharbi N, Yuan X et al (2016) Axitinib blocks Wnt/β-catenin signaling and directs asym- metric cell division in cancer. Proc Natl Acad Sci U S A 113(33):9339–9344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  CAS  PubMed  Google Scholar 

  • Schwend T, Loucks EJ, Ahlgren SC (2010) Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish. PLoS One 5(12):e14396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N, Kawakami K, Ishitani T (2012) Visualization and exploration of Tcf/Lef func- tion using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish. Dev Biol 370(1):71–85

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Ishitani S, Sato A, Shibuya H, Ishitani T (2014) Hipk2 and PP1c cooperate to maintain Dvl protein levels required for Wnt signal transduction. Cell Rep 8(5):1391–1404

    Article  CAS  PubMed  Google Scholar 

  • Teo JL, Kahn M (2010) The Wnt signaling pathway in cellular proliferation and differentiation: a tale of two coactivators. Adv Drug Deliv Rev 62(12):1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Teo JL, Ma H, Nguyen C, Lam C, Kahn M (2005) Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A 102(34):12171–12176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Vanhollebeke B, Stone OA, Bostaille N et al (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. elife 4:e06489

    Article  PubMed Central  Google Scholar 

  • Yanfeng W, Saint-Jeannet JP, Klein PS (2003) Wnt-frizzled signaling in the induction and differentiation of the neural crest. BioEssays 25:317–325

    Article  PubMed  Google Scholar 

  • Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier in- tegrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31(2):248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Ishitani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishitani, T., Zou, J. (2018). Zebrafish Wnt/β-Catenin Signaling Reporters Facilitate Understanding of In Vivo Dynamic Regulation and Discovery of Therapeutic Agents. In: Hirata, H., Iida, A. (eds) Zebrafish, Medaka, and Other Small Fishes. Springer, Singapore. https://doi.org/10.1007/978-981-13-1879-5_1

Download citation

Publish with us

Policies and ethics