Plant-Associated Microbial Interactions in the Soil Environment: Role of Endophytes in Imparting Abiotic Stress Tolerance to Crops

  • Venkadasamy Govindasamy
  • Priya George
  • Susheel Kumar Raina
  • Mahesh Kumar
  • Jagadish Rane
  • Kannepalli Annapurna


Plant-associated microbial interactions involve the great array of root/shoot dynamic environments known as the rhizosphere (in soil) and phyllosphere (plant aerial parts). Here, microbial communities are under multi-prolonged interactions within themselves as well as with plants to improve plant adaptation and tolerance to environmental constraints. Among the different kinds of plant-associated microbial interactions, beneficial “endophytic interactions” occur in rhizosphere as well as in phyllosphere habitats, wherein diverse group of bacterial and fungal communities colonizes plant inter- and intracellular spaces. Structural composition of endophytic microbial communities with respect to few bacterial groups and fungal species has been characterized. Identity of their large diversity and ecological functions of large majority of microbial species in the plant endophytic microbiome are remaining unknown. A variety of distinct abiotic stresses in the soil environment is known to occur singly or in combinations, causing both general and specific detrimental effects on plant growth and development. In addition to the direct negative impact on growth of the plants, abiotic stresses known to affect the rhizosphere soil as well as plant-associated beneficial microbial interactions (symbiotic and endophytic interactions) and thereby crop yield in agriculture. The so-called term induced systemic tolerance (IST) has been put forward to explain different possible mechanisms exerted by the rhizo-/endophytic bacterial and fungal- or microbe-mediated systemic tolerance against abiotic stresses in plants. Hence, there is a necessity for redefining as well as rethinking of modern agronomic practices with our current perceptive of the significance of plant-associated beneficial microbial communities (rhizosphere, symbiotic, and endophytic interactions) for plant productivity and health under abiotically stressed environments. In this present chapter, we converse the impact of abiotic stresses upon soil and plant-microbial beneficial interactions; diversity exists in the endophytic microbial interactions (rhizobacterial endophytes, Archaea, fungal endophytes, and beneficial viruses) and their possible mechanisms including habitat-adapted symbiosis involved in promoting growth, development, and tolerance to abiotic stresses in crop plants.


Plant microbiome Plant Microbe interactions Endophytes Stress tolerance Abiotic stresses 


  1. Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115PubMedCrossRefGoogle Scholar
  2. Adams AE, Kazenel MR, Rudgers JA (2017) Does a foliar endophyte improve plant fitness under flooding? Plant Ecol 218(6):711–723CrossRefGoogle Scholar
  3. Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soil 46(1):45–55CrossRefGoogle Scholar
  4. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–11519PubMedCrossRefGoogle Scholar
  5. Amiri R, Nikbakht A, Rahimmalek M, Hosseini H (2017) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of Mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36(2):502–515CrossRefGoogle Scholar
  6. Andrés-Barrao C, Lafi FF, Alam I, Zélicourt AD, Eida AA, Bokhari A, Alzubaidy HS, Bajic VB, Hirt H, Saad M (2017) Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023PubMedPubMedCentralCrossRefGoogle Scholar
  7. Appoloni S, Lekberg Y, Tercek MT et al (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659PubMedCrossRefGoogle Scholar
  8. Azad K, Kaminskyj S (2016) A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68(1–3):73–78CrossRefGoogle Scholar
  9. Baker BJ et al (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107(19):8806–8811PubMedCrossRefGoogle Scholar
  10. Bakken LR, Bergaust L, Liu B, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos Trans R Soc B 367:1226–1234CrossRefGoogle Scholar
  11. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soil 46(1):45–55CrossRefGoogle Scholar
  12. Barea JM, Azco’n R, Azco’n-Aguilar C (2004) Mycorrhizal fungi and plant growth promoting rhizobacteria. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 351–371Google Scholar
  13. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252CrossRefGoogle Scholar
  14. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423PubMedCrossRefGoogle Scholar
  15. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495PubMedCrossRefGoogle Scholar
  16. Bell C, McIntyre N, Cox S, Tissue D, Zak J (2008) Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert grassland. Microbial Ecol 56:153–167CrossRefGoogle Scholar
  17. Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218PubMedCrossRefGoogle Scholar
  18. Berthelot C, Blaudez D, Leyval C (2017) Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int J Phytoremediation 19(12):1118–1125PubMedCrossRefGoogle Scholar
  19. Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424PubMedCrossRefGoogle Scholar
  20. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  21. Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ (2014) Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Glob Chang Biol 20:2971–2982PubMedCrossRefGoogle Scholar
  22. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  23. Buscot F, Varma A (2005) Microorganisms in soils: roles in genesis and functions. Springer, HeidelbergGoogle Scholar
  24. Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195PubMedCrossRefGoogle Scholar
  25. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microbial Ecol 41(3):252–263CrossRefGoogle Scholar
  26. Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen S, Zou J, Hu Z, Chen H, Lu Y (2014) Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric For Meteorol 198:335–346CrossRefGoogle Scholar
  28. Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403PubMedPubMedCentralGoogle Scholar
  29. Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083PubMedCrossRefPubMedCentralGoogle Scholar
  30. Coleman-Derr D, Tringe SG (2014) Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol 5:283PubMedPubMedCentralCrossRefGoogle Scholar
  31. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbiol Ecol 62(1):188–197CrossRefGoogle Scholar
  32. Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78(24):8587–8594PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cregger MA, Sanders NJ, Dunn RR, Classen AT (2014) Microbial communities respond to experimental warming, but site matters. Peer J 2:e358PubMedCrossRefGoogle Scholar
  34. Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Du X, Ren Y, Wylie SJ (2017a) Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress. Environ Exp Bot 143:59–71CrossRefGoogle Scholar
  35. Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2017b) A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings. Arch Microbiol 21:1–4Google Scholar
  36. De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–1CrossRefGoogle Scholar
  37. DeAngelis KM, Pold G, Topcuoglu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172PubMedCrossRefGoogle Scholar
  39. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696CrossRefGoogle Scholar
  40. Doty SL (2017) Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy. In: Functional importance of the plant microbiome. Springer, Cham, pp 1–5CrossRefGoogle Scholar
  41. Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679CrossRefGoogle Scholar
  42. Durán J, Morse JL, Groffman PM, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2014) Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests. Glob Chang Biol 20(11):3568–3577PubMedCrossRefGoogle Scholar
  43. Elhindi K, Sharaf El Din A, Abdel-Salam E, Elgorban A (2016) Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agric Scand B-S P 66(7):583–592Google Scholar
  44. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A (2008) A korarchaeal genome reveals new insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105:8102–8107PubMedPubMedCentralCrossRefGoogle Scholar
  45. Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JU (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782PubMedCrossRefGoogle Scholar
  46. Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99(6):1500–1507CrossRefGoogle Scholar
  47. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ferrando L, Fernández Scavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91(9):fiv104PubMedCrossRefGoogle Scholar
  49. Forreiter C, Nover L (1998) Heat induced stress proteins and the concept of molecular chaperones. J Biosci 23(4):287–302CrossRefGoogle Scholar
  50. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3(4):395–398CrossRefGoogle Scholar
  51. Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6):e0130456PubMedPubMedCentralCrossRefGoogle Scholar
  52. Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21(11):937–950PubMedCrossRefGoogle Scholar
  53. Glassner H, Zchori-Fein E, Compant S, Sessitsch A, Katzir N, Portnoy V, Yaron S (2015) Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol Ecol 91(7):fiv074PubMedCrossRefGoogle Scholar
  54. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbio 41:109–117CrossRefGoogle Scholar
  55. Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  56. Govindasamy V, Senthilkumar M, Annapurna K (2015) Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65(3):1679–1687CrossRefGoogle Scholar
  57. Govindasamy V, Senthilkumar M, Gaikwad K, Annapurna K (2008) Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Curr Microbiol 57(4):312–317PubMedCrossRefGoogle Scholar
  58. Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 333–364CrossRefGoogle Scholar
  59. Govindasamy V, Franco CM, Gupta VV (2014) Endophytic actinobacteria: diversity and ecology. In: Advances in endophytic research. Springer, New Delhi, pp 27–59CrossRefGoogle Scholar
  60. Govindasamy V, Raina SK, George P, Kumar M, Rane J, Minhas PS, Vittal KP (2017) Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie van Leeuwenhoekr 28:1–9Google Scholar
  61. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37(3):395–412CrossRefGoogle Scholar
  62. Guy L, Ettema TJ (2011) The archaeal ‘TACK’superphylum and the origin of eukaryotes. Trends Microbiol 19(12):580–587PubMedCrossRefGoogle Scholar
  63. Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221CrossRefGoogle Scholar
  64. Haase S, Philippot L, Neumann G, Marhan S, Kandeler E (2008) Local response of bacterial densities and enzyme activities toelevated atmospheric CO2 and different N supply in therhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40:1225–1234CrossRefGoogle Scholar
  65. Hagerty SB, Van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Chang 4(10):903–906CrossRefGoogle Scholar
  66. Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, Lee IJ (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10(1):117–125CrossRefGoogle Scholar
  67. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  68. Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean–RhizobiumGlomus associations. New Phytol 101(3):427–440CrossRefGoogle Scholar
  69. He Y, Yang Z, Li M, Jiang M, Zhan F, Zu Y, Li T, Zhao Z (2017) Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environ Sci Pollut Res 24:18494–18504CrossRefGoogle Scholar
  70. Hibbett DS et al (2007) A higher level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
  71. Hosseini F, Mosaddeghi MR, Dexter AR (2017) Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol Biochem 118:107–120PubMedCrossRefGoogle Scholar
  72. Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90(2):137–149CrossRefGoogle Scholar
  73. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417(6884):63–67PubMedPubMedCentralCrossRefGoogle Scholar
  74. Imazaki I, Kadota I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiol Ecol 91(9):fiv098PubMedCrossRefGoogle Scholar
  75. Isobe K, Koba K, Otsuka S, Senoo K (2011) Nitrification and nitrifying microbial communities in forest soils. J For Res 16(5):351CrossRefGoogle Scholar
  76. Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromat Plants 3(2):71–77Google Scholar
  77. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585CrossRefGoogle Scholar
  78. Jumpponen ARI, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310CrossRefGoogle Scholar
  79. Jumpponen A (2001) Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  80. Kaisermann A, Maron PA, Beaumelle L, Lata JC (2015) Fungal communities are more sensitive indicators to non-extreme soil moisture variations than bacterial communities. Appl Soil Ecol l86:158–164CrossRefGoogle Scholar
  81. Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460CrossRefGoogle Scholar
  82. Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71(3):337–344Google Scholar
  83. Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastia MT, Gouriveau F (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513(7516):81–84PubMedCrossRefGoogle Scholar
  84. Kawashima T, Amano N, Koike H, Makino SI, Higuchi S, Kawashima-Ohya Y et al (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci 97(26):14257–14262PubMedCrossRefGoogle Scholar
  85. Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 389–407Google Scholar
  86. Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232CrossRefGoogle Scholar
  87. Koda N, Asaeda T, Yamade K, Kawahara H, Obata H (2001) A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoeaagglomerans IFO12686. Biosci Biotechnol Biochem 65(4):888–894PubMedCrossRefGoogle Scholar
  88. Kong Z, Deng Z, Glick BR, Wei G, Chou M (2017) A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Ann Microbiol 67(1):49–58CrossRefGoogle Scholar
  89. Lacercat-Didier L, Berthelot C, Foulon J, Errard A, Martino E, Chalot M, Blaudez D (2016) New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza 26(7):657–671PubMedCrossRefPubMedCentralGoogle Scholar
  90. Latef AA, Hashem A, Rasool S, Abd_Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59(5):407–426CrossRefGoogle Scholar
  91. Li L, Li L, Wang X, Zhu P, Wu H, Qi S (2017) Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem 119:211–223PubMedCrossRefPubMedCentralGoogle Scholar
  92. Li X, Geng X, Xie R, Fu L, Jiang J, Gao L, Sun J (2016) The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of Hybrid Pennisetum. Biotechnol Biofuels 9(1):190PubMedPubMedCentralCrossRefGoogle Scholar
  93. Linderman RG (1992) Vesicular–arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication, Madison, pp 45–70Google Scholar
  94. Liu J, Guo C, Chen ZL, He JD, Zou YN (2016) Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir J Food Agric 28(4):251–256CrossRefGoogle Scholar
  95. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):fiw194PubMedCrossRefGoogle Scholar
  97. Lynch JM (1990) The rhizosphere. Wiley, Chichester, pp 1–10Google Scholar
  98. Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104(5):759–768PubMedCrossRefGoogle Scholar
  99. Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85PubMedCrossRefGoogle Scholar
  100. Maček I, Dumbrell AJ, Nelson M et al (2011) Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2springs. Appl Environ Microbiol 77:4770–4777PubMedPubMedCentralCrossRefGoogle Scholar
  101. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940CrossRefGoogle Scholar
  102. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water-stress: results from a meta-analysis. Ecology 93:930–938PubMedCrossRefGoogle Scholar
  103. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479–e48493PubMedPubMedCentralCrossRefGoogle Scholar
  104. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315(5135):513–515PubMedCrossRefGoogle Scholar
  105. Martin J, Ulrich Hartl F (1997) Chaperone-assisted protein folding. Curr Opin Struct Biol 7(1):41–52PubMedCrossRefGoogle Scholar
  106. Martin R, Gazis R, Skaltsas D, Chaverri P, Hibbett D (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107(2):284–297PubMedCrossRefGoogle Scholar
  107. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  108. Millar NS, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182(3):625–641PubMedPubMedCentralCrossRefGoogle Scholar
  109. Molina-Montenegro MA, Oses R, Torres-Díaz C, Atala C, Zurita-Silva A, Ruiz-Lara S (2016) Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition. AoB Plants 8:plw062PubMedPubMedCentralCrossRefGoogle Scholar
  110. Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6:138PubMedPubMedCentralCrossRefGoogle Scholar
  111. Münchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181(1):83–90PubMedPubMedCentralGoogle Scholar
  112. Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670CrossRefGoogle Scholar
  113. Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes MA, Pajuelo E, ID R-L (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol 9(2):249–256CrossRefGoogle Scholar
  114. Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39CrossRefGoogle Scholar
  115. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190(3):783–793PubMedCrossRefGoogle Scholar
  116. Oehl F, Sieverding E, Palenzuela J, Ineichen K (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199PubMedPubMedCentralCrossRefGoogle Scholar
  117. Oliveira MN, Santos TM, Vale HM, Delvaux JC, Cordero AP, Ferreira AB, Miguel PS, Tótola MR, Costa MD, Moraes CA, Borges AC (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59(4):221–230PubMedCrossRefGoogle Scholar
  118. Pace NR (1997) A molecular view of microbial diversity in the biosphere. Science 276:734–740PubMedPubMedCentralCrossRefGoogle Scholar
  119. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220PubMedCrossRefGoogle Scholar
  120. Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152PubMedCrossRefGoogle Scholar
  121. Pereira SI, Monteiro C, Vega AL, Castro PM (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97CrossRefGoogle Scholar
  122. Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V (2017) Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 9:1–3Google Scholar
  123. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105PubMedCrossRefGoogle Scholar
  124. Qin S, Feng WW, Wang TT, Ding P, Xing K, Jiang JH (2017) Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant Soil 416:117–132CrossRefGoogle Scholar
  125. Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699PubMedGoogle Scholar
  127. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823–e14823PubMedPubMedCentralCrossRefGoogle Scholar
  128. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298(5598):1581PubMedCrossRefGoogle Scholar
  129. Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj SG (2017) Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PLoS One 12(10):e0186704PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rodriguez RJ, Redman RS, Henson JM (2005) Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: unraveling the complexities of intimacy. In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem. Taylor & Francis/CRC Press, Boca Raton, pp 683–696Google Scholar
  131. Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strat Gl 9:261–272CrossRefGoogle Scholar
  132. Rodriguez RJ, Henson J, Van Volkenburgh E (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:40416CrossRefGoogle Scholar
  133. Rodriguez RJ, White JF, Arnold AE, Redman AR (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  134. Roger A, Colard A, Angelard C, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7(11):2137–2146PubMedPubMedCentralCrossRefGoogle Scholar
  135. Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351(2):187–194PubMedCrossRefGoogle Scholar
  136. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108PubMedCrossRefGoogle Scholar
  137. Ruiz-Lozano JM, Aroca R (2017) Plant Aquaporins and Mycorrhizae: their regulation and involvement in plant physiology and performance. In: Chaumont F, Tyerman S (eds) Plant Aquaporins. Springer, Cham, pp 333–353CrossRefGoogle Scholar
  138. Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452PubMedCrossRefGoogle Scholar
  139. Ryffel F, Helfrich EJ, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt JA (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10(3):632–643PubMedCrossRefGoogle Scholar
  140. Salles JF, Le Roux X, Poly F (2012) Relating phylogenetic and functional diversity among denitrifiers and quantifying their capacity to predict community functioning. Front Microbiol 3:209PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sandhya V, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soil 46(1):17–26CrossRefGoogle Scholar
  142. Santos SG, Silva PR, Garcia AC, Zilli JE, Berbara RL (2017) Dark septate endophyte decreases stress on rice plants. Braz J Microbiol 48(2):333–341PubMedCrossRefGoogle Scholar
  143. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. J Appl Microbiol 102:1283–1292PubMedCrossRefGoogle Scholar
  144. Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348PubMedPubMedCentralCrossRefGoogle Scholar
  145. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoeadispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24(7):955–960CrossRefGoogle Scholar
  146. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175PubMedCrossRefGoogle Scholar
  147. Sessitsch A, Reiter B, Berg B (2004) Endophytic bacterial communities of field grown potato plants and their plant growth promoting and antagonistic abilities. Can J Microbiol 50:239–349PubMedCrossRefGoogle Scholar
  148. Shearin ZR, Filipek M, Desai R, Bickford WA, Kowalski KP, Clay K (2018) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422(1–2):183–194CrossRefGoogle Scholar
  149. Sherameti I, Tripathi S, Varma A, Oelmüller R (2009) The root-colonizing endophyte pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21:799–807CrossRefGoogle Scholar
  150. Singhal U, Attri MK, Varma A (2017) Mass cultivation of mycorrhiza-like fungus Piriformospora indica (Serendipita indica) by batch in bioreactor. In: Mycorrhiza-function, diversity, state of the art 2017. Springer, Cham, pp 365–384CrossRefGoogle Scholar
  151. Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, New York/London/Burlington/San DiegoGoogle Scholar
  152. Stajner D, Kevreaan S, Gasaic O, Mimica-Dudic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445CrossRefGoogle Scholar
  153. Streitwolf-Engel R, Van der Heijden MG, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82(10):2846–2859CrossRefGoogle Scholar
  154. Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3(1):65–76Google Scholar
  155. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202PubMedCrossRefGoogle Scholar
  156. Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176(17):5210–5217PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tanapichatsakul C, Monggoot S, Gentekaki E, Pripdeevech P (2017) Antibacterial and antioxidant metabolites of Diaporthe spp. isolated from flowers of Melodorum fruticosum. Curr Microbiol 20:1–8Google Scholar
  158. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA et al (2002) Novel plant-microbe rhizosphere interaction involving Streptomyceslydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68(5):2161–2171PubMedPubMedCentralCrossRefGoogle Scholar
  159. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164(2):347–355CrossRefGoogle Scholar
  160. Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90(5):896–903. CrossRefGoogle Scholar
  161. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indicareprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  162. Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wu S, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425PubMedCrossRefGoogle Scholar
  164. Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180(4):911–921PubMedCrossRefGoogle Scholar
  165. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedCrossRefGoogle Scholar
  166. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963PubMedGoogle Scholar
  167. Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63(3):575–584CrossRefGoogle Scholar
  168. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358PubMedCrossRefGoogle Scholar
  169. Zeiller M, Rothballer M, Iwobi AN, Böhnel H, Gessler F, Hartmann A, Schmid M (2015) Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301. Front Microbiol 6:1207PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11(6):e1005280PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X (2017) Dark septate endophyte improves drought tolerance in sorghum. Int J Agric Biol 19(1):53–60CrossRefGoogle Scholar
  172. Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73(4):574–581PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zhu X, Song F, Liu S, Liu F (2016) Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26(2):133–140PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Venkadasamy Govindasamy
    • 1
  • Priya George
    • 2
  • Susheel Kumar Raina
    • 3
  • Mahesh Kumar
    • 2
  • Jagadish Rane
    • 2
  • Kannepalli Annapurna
    • 1
  1. 1.Division of MicrobiologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.School of Drought Stress ManagementICAR-National Institute of Abiotic Stress ManagementBaramatiIndia
  3. 3.ICAR-National Bureau of Plant Genetic ResourcesRegional StationIndia

Personalised recommendations