Microbial Degradation of Petroleum Hydrocarbons: Technology and Mechanism

  • Elis Marina Turini Claro
  • Jaqueline Matos Cruz
  • Renato Nallin Montagnolli
  • Paulo Renato Matos Lopes
  • José Rubens Moraes Júnior
  • Ederio Dino BidoiaEmail author


The petrochemical industry has received considerable attention from many sectors in our society. Petroleum spill has been frequently reported due to the lack of appropriate protocols during exploration, refining, transportation, and storage. An in-depth knowledge of petroleum compounds before planning the best strategies of pollutant bioremediation. The petroleum composition is a mixture of different hydrocarbons. Typically, the most found molecules are alkanes, cycloalkanes, and hydrocarbon mono-aromatics, known as BTEX (benzene, toluene, ethylbenzene, and xylene isomers, ortho-, meta-, and para-xylene). Besides the environmental contamination, BTEX compounds deserve attention regarding their high toxicity and a potential threat to human health. Among the available technologies for remediating areas that were impacted by petroleum-derived fuels, microbial biodegradation has emerged as a very effective technique. These technologies can be used as a complementary action to other conventional treatment technologies. Many microorganisms can use BTEX as their only carbon source. An optimized BTEX biodegradation requires an abundant presence of electron acceptors, a high enzymatic expression and an enhanced microbial access to mono-aromatics hydrocarbons. The metabolic pathways related to hydrocarbon degradation will always depend on the microorganism and the growth conditions. Also, compounds will undergo biodegradation only if there are enzymes capable of catalyzing them. The microorganism P. putida has an outstanding metabolic versatility that allows its growth in many different carbon sources. There are many natural plasmids found in P. putida, including the TOL plasmid that provides the genes for degrading toxic mono-aromatic hydrocarbons. However, the strongest motivation behind biodegradation studies is to seek microorganisms with a wide range of metabolic pathways to degrade various pollutants with cost-effective procedures. Therefore, the purpose of this chapter is to expand the discussion about the BTEX bioremediation and microbial metabolism of hydrocarbons.


  1. Abouseoud M, Maachi R, Amrane A, Boudergua A (2008) Evaluation of different carbon and nitrogen sources in the production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151CrossRefGoogle Scholar
  2. Agência Nacional do Petróleo (ANP) (2016) Etanol anidro na gasolina sobe para 27% a partir de 16/03/16 (2016). Retrieved September 22, 2017, Web Site: 4118766
  3. Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Public Health Statement Total petroleum hydrocarbons. Retrieved September 14, 2017, Web Site:
  4. Agency for Toxic Substances and Disease Registry (ATSDR) (2004) Interaction profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). U.S. Department of Health and Human Services, Public Health Service. Retrieved May 25, 2017, Web Site:
  5. Ahmed Z, Song J (2011) Removal of gaseous toluene using immobilized Candida tropicalis in a fluidized bed bioreactor. Biotechnol 1:111–116Google Scholar
  6. Akmirza I, Pascual C, Carvajal A, Pérez R, Muñoz R, Lebrero R (2017) Anoxic biodegradation on BTEX in a biotrickling filter. Sci Total Environ 1:457–465CrossRefGoogle Scholar
  7. Almeda R, Wambauch Z, Chai C, Wang Z, Liu Z, Buskey EJ (2013) Effects of crude oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton. PLoS One 8:1–15Google Scholar
  8. Alvarez PJJ, Hunt CS (2002) The effect of fuel alcohol on monoaromatic hydrocarbon biodegradation and natural attenuation. Rev Latinoam Microbiol 44:83104Google Scholar
  9. Atlas RM (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156CrossRefGoogle Scholar
  10. Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449CrossRefGoogle Scholar
  11. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, bioestimulation and bioaugmentation. Bioresour Technol 96:1049–1055PubMedCrossRefGoogle Scholar
  12. Blasi B, Tafer H, Kustor C, Poyntner C, Lopandic K, Sterflinger K (2017) Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep 7:1–13CrossRefGoogle Scholar
  13. Bolden AL, Kwiatkowski CF, Colborn T (2015) New look at BTEX: are ambient levels a problem? Environ Sci Technol 49:5261–5276PubMedCrossRefGoogle Scholar
  14. Bowen SE, Hannigan JH (2006) Development toxicity of prenatal exposure to toluene. AAPS J 8:419–424CrossRefGoogle Scholar
  15. Burlage RS, Hooper SW, Sayler GS (1989) The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323–1328PubMedPubMedCentralGoogle Scholar
  16. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juaréz JF, Valderrama A, Barragán MJL, García JL, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cavalca L, Di Gennaro P, Colombo M, Andreoni V, Bernasconi S, Ronco I, Bestetti G (2000) Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Res Microbiol 151:877–887PubMedCrossRefGoogle Scholar
  18. Cesarino I, Cesarino V, Moraes FC, Ferreira TCR, Lanza MRV, Mascaro LH, Machado SAS (2013) Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes. Mater Chem Phys 141:304–309CrossRefGoogle Scholar
  19. Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coledam DAC, Pupo MMS, Silva BF, Silva AJ, Eguiluz KIB, Salazar-Banda GR, Aquino JM (2017) Electrochemical mineralization of cephalexin using a conductive diamond anode: a mechanistic and toxicity investigation. Chemosphere 168:638647CrossRefGoogle Scholar
  21. Colla LM, Primaz AL, Lima M, Bertolin TE, Costa JAV (2008) Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com herbicidas triazínicos. Cienc Agrotec 32:809–813CrossRefGoogle Scholar
  22. Corseuil HX, Weber JRWJ (1994) Potential biomass limitations on rates of degradation on monoaromatic hydrocarbons by indigenous microbes in subsurface soils. Water Res 28:1415–1423CrossRefGoogle Scholar
  23. Corseuil HX, Gomez DE, Schambeck CM, Ramos DT, Alvarez PJJ (2015) Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation. J Contam Hydrol 174:1–9PubMedCrossRefGoogle Scholar
  24. Cozzareli IM, Bekins BA, Eganhouse RP, Warren E, Essaid HI (2010) In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J Contam Hydrol 111:48–64CrossRefGoogle Scholar
  25. D’Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF (2010) TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312:84–92PubMedCrossRefGoogle Scholar
  26. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13Google Scholar
  27. Das S, Dash HR (2014) Microbial biodegradation and bioremediation. A potential toll for restoration of contaminated areas. Microb Biodegrad Bioremed:1–22Google Scholar
  28. Deeb RA, Sharp JO, Stocking A, Mcdonald S, West KA, Laugier M, Alvarez PJJ, Kavanaugh MC, Alvarez-cohen L (2002) Impact of ethanol on benzene plume lengths: microbial and modeling studies. J Environ Eng 128:868–875CrossRefGoogle Scholar
  29. Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutrit 10:244–267Google Scholar
  30. Domínguez-Cuevas P, Marqués S (2017) Current view of the mechanisms controlling the transcription of the TOL plasmid aromatic degradation pathways. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Springer, Cham, pp 1–22Google Scholar
  31. Dong CD, Tsai ML, Chen CW, Hung CM (2017) Heterogeneous persulfate oxidation of BTEX and MTBE using Fe3O4-CB magnetite composites and the cytotoxicity of degradation products. Int Biodeterior Biodegrad 124:109–118CrossRefGoogle Scholar
  32. El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122CrossRefGoogle Scholar
  33. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16CrossRefGoogle Scholar
  34. Freitas BG, Brito JGM, Brasileiro PPF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:1–9Google Scholar
  35. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816PubMedCrossRefGoogle Scholar
  36. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, Inc, New York, pp 181–252Google Scholar
  37. Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856871CrossRefGoogle Scholar
  38. Gusmão VR, Martins TH, Chinalia FA, Sakamoto IK, Thiemann OH (2006) BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem 41:1391–1400CrossRefGoogle Scholar
  39. Hollender J, Althoff K, Mundt M, Dott W (2003) Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test. Chemosphere 53:269–275PubMedCrossRefGoogle Scholar
  40. International Agency Research on Cancer (IARC) (2000) Monographs on the evaluation of carcinogenic risks to humans – some industrial chemicals. In: Ethylbenzene, vol 77. World Health Organization, Lyon, pp 227–266. Retrieved January 18, 2017, Web Site:
  41. Irshaid FI, Jacob JH (2015) Screening and characterization of aerobic xylene-degrading bacteria from gasoline contaminated soil sites around gas stations in northern Jordan. J Biol Sci 15:167–176CrossRefGoogle Scholar
  42. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: life of science. In: Biodegradation: involved microorganisms and genetically engineered microorganisms. InTech, Rijeka, pp 289–320Google Scholar
  43. Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211PubMedPubMedCentralCrossRefGoogle Scholar
  44. Khodaei K, Nassery HR, Asadi IMM, Mohammadzadeh H, Mahmoodlu MG (2017) BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX30). Int Biodeterior Biodegrad 116:234–242CrossRefGoogle Scholar
  45. Kinder KM, Gellasch CA, Dusenbury JA, Timmes TC, Hughes TM (2017) Evaluating the impact of ambient benzene vapor concentrations of product water from condensation water from air technology. Sci Total Environ 590-591:60–68PubMedCrossRefGoogle Scholar
  46. Kumar M, Khanna S (2010) Diversity of 16S rRNA and dioxygenase genes detected in coal tarcontaminated site undergoing active bioremediation. J Appl Microbiol 108:1252–1262PubMedCrossRefGoogle Scholar
  47. Lee JY, Roh JR, Kim HS (1994) Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture. Biotechnol Bioeng 43:1146–1152PubMedCrossRefGoogle Scholar
  48. Lee JY, Jung KH, Choi SH, Kin HS (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl Environ Microbiol 61:2211–2217PubMedPubMedCentralGoogle Scholar
  49. Littlejohns JV, Daugulis AJ (2008) Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium. Process Biochem 43:1068–1076CrossRefGoogle Scholar
  50. Lueders T (2017) The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 93:1–13CrossRefGoogle Scholar
  51. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2016) Microbiologia de Brock, 14th edn. Artmed, Porto Alegre, 987 pGoogle Scholar
  52. Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–870PubMedCrossRefGoogle Scholar
  53. Martínez-Alonso M, Gaju N (2005) El papel de los tapetes microbianos en la biorrecuperación de zonas litorales sometidas a la contaminación por vertidos de petróleo. Ecosistemas 14:79–91Google Scholar
  54. Martino CD, López NI, Iustman R (2012) Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int Biodeterior Biodegrad 67:15–20CrossRefGoogle Scholar
  55. Mazzeo DEC, Levy CE, De Angelis DF, Marin-Morales MA (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408:4334–4340PubMedCrossRefGoogle Scholar
  56. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Tarouco PC, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118PubMedCrossRefGoogle Scholar
  57. Mitra S, Roy P (2011) BTEX: a serious ground-water contaminant. Res J Environ Sci 5:394–398CrossRefGoogle Scholar
  58. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Prot 109:72–81CrossRefGoogle Scholar
  59. Montagnolli RN, Bidoia ED (2012) Petroleum derivatives biodegradation: environmental impact and bioremediation strategies. Amazon, 104 pGoogle Scholar
  60. Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417PubMedCrossRefGoogle Scholar
  61. Mukherjee AK, Bordoloi NK (2012) Biodegradation of benzene, toluene and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environ Sci Pollut Res 19:3380–3388CrossRefGoogle Scholar
  62. Nascimento Filho I, Vieceli NC, Cardoso EM, Lovatel ER (2013) Analysis of BTEX in experimental columns containing neat gasoline and gasoline-ethanol. J Braz Chem Soc 24:410–417CrossRefGoogle Scholar
  63. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225PubMedCrossRefGoogle Scholar
  64. Noel C, Gourry JC, Deparis J, Blessing M, Ignatiadis I, Guimbaud C (2016) Combining geoelectrical measurements and CO2 analyses to monitor the enhanced bioremediation of hydrocarbon-contaminated soils: a field implementation. Appl Environ Soil Sci 2016:1–15CrossRefGoogle Scholar
  65. Nwankwegu A, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11CrossRefGoogle Scholar
  66. Oberoi AS, Philip L (2017) Variation in toxicity during the biodegradation of various heterocyclic homocyclic aromatic hydrocarbons in single and multi-substrate systems. Ecotoxicol Environ Safety 135:337–346PubMedCrossRefGoogle Scholar
  67. Ortiz-Hernández ML, Rodríguez A, Sánchez-Salinas E, Castrejóngodínez ML (2014) Chapter 5. Bioremediation of soils contaminated with pesticides: experiences in Mexico. In: Bioremediation in Latin America, current research and perspectives. Springer, New York, pp 69–100Google Scholar
  68. Otenio MH, Silva MTL, Marques MLO, Roseiro JC, Bidoia ED (2005) Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz J Microbiol 36:258–261CrossRefGoogle Scholar
  69. Padhi SK, Gokhale S (2017) Benzene biodegradation by indigenous mixed microbial culture: kinetic modelling and process optimization. Int Biodeterior Biodegrad 119:511–519CrossRefGoogle Scholar
  70. Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:1–7CrossRefGoogle Scholar
  71. Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, Van Groenestijin JW (2002) Substrate interactions during the biodegradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 68:2660–2665PubMedPubMedCentralCrossRefGoogle Scholar
  72. Prince RC, Nash GW, Hill SJ (2016) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111:354–357PubMedCrossRefGoogle Scholar
  73. Qu D, Zhao Y, Sun J, Ren H, Zhou R (2015) BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1. Can J Microbiol 61:691–699PubMedCrossRefGoogle Scholar
  74. Rahul MAK, Balomajumder C (2013) Biological treatment and modelling aspect of BTEX abatement process in a biofilter. Bioresour Technol 142:9–17PubMedCrossRefGoogle Scholar
  75. Reardon KF, Mosteller DC, Rogers JB, Duteau N, Kim K-H (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110:1005–1011PubMedPubMedCentralCrossRefGoogle Scholar
  76. Rüegg I, Hafner T, Bucheli-Witschel M, Egli T (2007) Dynamics of benzene and toluene degradation in Pseudomonas putida F1 in the presence of the alternative substrate succinate. Eng Life Sci 7:331–342CrossRefGoogle Scholar
  77. Sandu C, Popescu M, Rosales E, Pazos M, Lazar G, Sanromán MA (2017) Electrokinetic oxidant soil flushing: a solution for in situ remediation of hydrocarbons polluted soils. J Electroana Chem 799:1–8CrossRefGoogle Scholar
  78. Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ Pollut 150(1):166–176PubMedCrossRefGoogle Scholar
  79. Shim H, Hwang B, Lee SS, Kong SH (2005) Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation 16:319–327PubMedCrossRefGoogle Scholar
  80. Souza MM, Colla TT, Bücker F, Ferrão MF, Huang CT, Andreazza R, Camargo FAO, Bento FM (2016) Biodegradation potential of Serratia marcescens for diesel/biodiesel blends. Int Biodeterior Biodegradation 110:141–146CrossRefGoogle Scholar
  81. Trellu C, Mousset E, Pechaud Y, Huguenot D, Van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mat 306:149–174CrossRefGoogle Scholar
  82. Turner NR, Renegar DA (2017) Petroleum hydrocarbon toxicity to corals: a review. Mar Pollut Bull 119:1–16PubMedCrossRefGoogle Scholar
  83. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286PubMedCrossRefGoogle Scholar
  84. Varjani SJ, Upasani VN (2016) Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182PubMedCrossRefGoogle Scholar
  85. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:7183CrossRefGoogle Scholar
  86. Weelink SAB, Van Eekert MHA, Stams AJM (2010) Degradation of BTEX by anaerobic bacteria: physiology and application. Rev Environ Sci Bio/Tech 9:359–385CrossRefGoogle Scholar
  87. Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138151CrossRefGoogle Scholar
  88. Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423PubMedPubMedCentralGoogle Scholar
  89. Wolicka D, Suszek A, Borkowski A, Bielecka A (2009) Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol 10:3221–3227CrossRefGoogle Scholar
  90. Xie F, Lu Q, Toledo RA, Shim H (2016) Combined removal of an MTBE and BTEX mixture using indigenous microbe immobilized on waste silica gel. Int J Environ Sci Dev 7:244–247CrossRefGoogle Scholar
  91. Xu Z, Chai J, Wu Y, Qin R (2015) Transport and biodegradation modeling of gasoline spills in soil aquifer system. Environ Earth Sci 74:2871–2882CrossRefGoogle Scholar
  92. Yu SH, Ke L, Wong YS, Tam NFY (2005) Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments. Environ Int 31:149–154PubMedCrossRefGoogle Scholar
  93. Zhang L, Zhang C, Cheng Z, Yao Y, Chen J (2013) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90:1340–1347PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Elis Marina Turini Claro
    • 1
  • Jaqueline Matos Cruz
    • 1
  • Renato Nallin Montagnolli
    • 1
  • Paulo Renato Matos Lopes
    • 1
  • José Rubens Moraes Júnior
    • 1
  • Ederio Dino Bidoia
    • 1
    Email author
  1. 1.Department of Biochemical and Microbiology, Institute of BiosciencesSão Paulo State University (Unesp)Rio ClaroBrazil

Personalised recommendations