Advertisement

Microbes and Petroleum Bioremediation

  • Bruna Martins Dellagnezze
  • Milene Barbosa Gomes
  • Valéria Maia de Oliveira
Chapter

Abstract

Petroleum pollution is an environmental issue often reported, including oil spills that occur accidentally worldwide. The release of large quantities of oil causes directly or indirectly huge environmental and economic impacts and may persist for decades. Bioremediation processes, such as biostimulation and bioaugmentation, among others, represent an eco-friendly and effective way to treat impacted areas based on the use of biological agents, associated or not to other compounds like biosurfactants in order to mineralize or complex organic and inorganic pollutant compounds. Therefore, this book chapter will review some topics related to bioremediation, including several in situ and ex situ techniques employed to treat polluted areas and the use of biosurfactants produced by several microorganisms. Moreover, oil spills and how they can affect marine and terrestrial environments are also mentioned, based on recent reports available in literature and according to organizations responsible for environmental impact monitoring. Hydrocarbonoclastic microorganisms have been described in both environments as well as the community dynamics of specific groups as a function of oil compounds input. In marine environments, a high abundance increase of a specific group called “obligate hydrocarbonoclastic bacteria (OHCB)” has been reported after an event involving petroleum contamination. Similar observation has been reported for mangroves, showing that oil or its derivatives allow the selection of microorganisms capable to degrade hydrocarbons. Petroleum contamination in cold environments, as Arctic and Antarctic regions, represents a huge challenge since management of contaminated sites and bioremediation effectiveness in these regions depend on several factors influencing oil degradation under cold conditions facing intrinsic limiting factors. In conclusion, bioremediation is not only a scientific concept described in literature but a concrete and applied efficient tool to treat polluted environments. The increasing number of bioremediation companies and patents also corroborates the tendency in search for new technologies and approaches focusing on sustainable management of polluted areas.

References

  1. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, Biostimulation and Bioaugmention: A Review. Int J Environ Bioremediat Biodegrad 3(1):28–39Google Scholar
  3. Ali MIA, Khalil NM, El-Ghany MNA (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6(16):3783–3790., 30 April, 2012.  https://doi.org/10.5897/AJMR12.411
  4. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715CrossRefGoogle Scholar
  5. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180.  https://doi.org/10.1007/s11274-016-2137-x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  7. Banerjee AAR, Dutta S, Mondal S (2016) Bioremediation of hydrocarbon a review. Int J Adv Res 4(6):1303–1313CrossRefGoogle Scholar
  8. Bento FM, Camargo FOC, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055CrossRefGoogle Scholar
  9. Berthe-Corti L, Nachtkam M (2010) Bacterial communities in hydrocarbon-contaminated marine coastal environments. Chapter 54. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-540-77587-4_171 CrossRefGoogle Scholar
  10. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67Google Scholar
  11. Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594PubMedPubMedCentralCrossRefGoogle Scholar
  12. Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640PubMedCrossRefGoogle Scholar
  13. Camenzuli D, Freidman BL (2015) On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Res 34:24492.  https://doi.org/10.3402/polar.v34.24492 CrossRefGoogle Scholar
  14. Carrera-Martínez D, Mateos-Sanz A, López-Rodas V, Costas E (2010) Microalgae response to petroleum spill: An experimental model analyzing physiological and genetic response of Dunaliella tertiolecta (Chlorophyceae) to oil samples from the tanker Prestige. Aquat Toxicol 97:151–159PubMedCrossRefGoogle Scholar
  15. Cases I, Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222PubMedGoogle Scholar
  16. Chakrabarty M (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 112(2):815–823PubMedPubMedCentralGoogle Scholar
  17. Chakrabarty M, Chou G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid in pseudomonas. Proc Natl Acad Sci U S A 70(4):1137–1140CrossRefGoogle Scholar
  18. Chen J, Denison MS (2011) The deepwater horizon oil spill: environmental fate of the oil and the toxicological effects on marine organisms. The J Young Investigators 21(6):84–95Google Scholar
  19. Chen SC, Chen SZ, Fang HY (2005) Study on EDTA-degrading bacterium Burkholderia cepacia YL-6 for bioaugmentation. Bioresour Technol 96:1782–1787PubMedCrossRefGoogle Scholar
  20. Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1(3):117–138PubMedPubMedCentralCrossRefGoogle Scholar
  21. Crisafi F, Genovese M, Smedile F, Russo D, Catalfamo M, Yakimov M, Giuliano L, Denaro R (2016) Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar Pollut Bull. May 15 106(1–2):119–126.  https://doi.org/10.1016/j.marpolbul.2016.03.017 PubMedCrossRefGoogle Scholar
  22. Dadrasnia A, Shahsavari N, Emenike, CU (2013) Remediation of Contaminated Sites. Chapter 4. In Book: Chemistry » Physical and Theoretical Chemistry » “Hydrocarbon”, book edited by Vladimir Kutcherov and Anton Kolesnikov, ISBN 978–953–51-0927-3Google Scholar
  23. Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B Biointerfaces 84:292–300PubMedCrossRefPubMedCentralGoogle Scholar
  24. Das N, Chandran P (2011) Review article: microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int, Article ID 941810, 13.  https://doi.org/10.4061/2011/941810 Google Scholar
  25. Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione J (2009) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 32:1521–1528CrossRefGoogle Scholar
  26. Dellagnezze BM, Sousa GV, Martins LL, Domingos DF, Limache EEG, Vasconcellos SP, Cruz GF, Oliveira VM (2014) Bioremediation potential of microorganisms derived from petroleum reservoirs. Mar Pollut Bull 89:191–200CrossRefGoogle Scholar
  27. Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VM, Santisi S, Capello S, Oliveira VM (2016) Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Mar Pollut Bull 107:107–117PubMedCrossRefGoogle Scholar
  28. Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L, Lovecka P, Ryslava E, Macek T (2005) Two approaches to biological decontamination of groundwater and soil polluted by aromatics characterization of microbial populations. Int Microb 8:205–211Google Scholar
  29. Dong C, Chen X, Xie Y, Lai Q, Shao Z (2014) Complete genome sequence of Thalassolituus oleivorans R6-15, an obligate hydrocarbonoclastic marine bacterium from the Arctic Ocean. Stand Genomic Sci 9(3):893–901.  https://doi.org/10.4056/sigs.5229330 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Doval MD, Morono A, Pazos Y, Lopez A, Madrinán M (2006) Monitoring dissolved aromatic hydrocarbon in Rias Baixas embayments (NW Spain) after Prestige oil spills: Relationship with hydrography. Estuar Coast Shelf Sci 67(1–2):205–218CrossRefGoogle Scholar
  31. El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275Google Scholar
  32. El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122CrossRefGoogle Scholar
  33. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173Google Scholar
  34. Firmino PIM, Farias RS, Barros AN, Buarque PMC, Rodríguez E, Lopes AC, dos Santos AB (2015) Understanding the anaerobic BTEX removal in continuous-flow bioreactors for ex situ bioremediation purposes. Chem Eng J 281:272–280CrossRefGoogle Scholar
  35. Franzetti A, Tamburini E, Banat IM (2010) Application of biological surface active compounds in remediation technologies. Adv Exp Med Biol 672:121–134PubMedCrossRefPubMedCentralGoogle Scholar
  36. Frutos FJG, Escolano O, Garcıa S, Mar Babim M, Fernandez MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183:806–813CrossRefGoogle Scholar
  37. Fulekar MH (2009) Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Rom Biotech Lett 14(6):4900–4905Google Scholar
  38. Garima T, Singh SP (2014) Application of bioremediation on solid waste management: a review. J Bioremed Biodegr 5:248–251Google Scholar
  39. Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34(5):447–494CrossRefGoogle Scholar
  40. Gertler C, Gerdts G, Timmis KN, Golyshin PN (2009) Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation. FEMS Microbiol Ecol 69(2):288–300PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ghizelini AM, Mendonça-Hagler LCS, Macrae A (2012) Microbial diversity in Brazilian mangrove sediments: A mini review. Brazilian J Microbiol 43(4):1242–1254PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gill DA, Picou S, Ritchie LA (2012) The Exxon Valdez and BP Oil Spills A comparison of initial social and psychological impacts. American Behavioral Sci 56(1):3–23CrossRefGoogle Scholar
  43. Gomes MB, Gonzales-Limache EE, Sousa STP, Dellagnezze BM, Sartoratto A, Silva LCF, Gieg LM, Valonie E, Souza RS, Torres APR, Sousa MP, De Paula SO, Silva CC, Oliveira VM (2018) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeteriorat Biodegrad 126:231–242CrossRefGoogle Scholar
  44. González, J, Figueiras, FG, Aranguren-Gassis, M,. Crespo, BG, Fernández, E, Morán, XAG, Nieto-Cid, M (2009) Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Estuar Coast Shelf Sci 83(3):265–276CrossRefGoogle Scholar
  45. Hassanshahian M, Cappello S (2013) Crude oil biodegradation in the marine environments. In: Chamy R, Rosenkranz F (eds) Biodegradation-Engineering and Technology. Intech Publisher, pp 68–82.  https://doi.org/10.5772/55554 Google Scholar
  46. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208PubMedCrossRefPubMedCentralGoogle Scholar
  47. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature:426344–426352Google Scholar
  48. Hohener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7PubMedCrossRefGoogle Scholar
  49. Hosokawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528CrossRefGoogle Scholar
  50. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation - Life of Science. Morocco. InTech, pp 289–320Google Scholar
  51. Jurelevicius D, Alvarez VM, Marques JM, Lima LRFS, Dias FA, Seldin L (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine and hypersaline water-containing microcosms. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.02251-13 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Juwarkar AA, Misra RR, Sharma JK (2014) Recent trends in bioremediation. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer-Verlag, Berlin, pp 81–100Google Scholar
  53. Kanissery RG, Sims, GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Appl Environ Soil Sci, Article ID 843450, 10Google Scholar
  54. Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499PubMedCrossRefGoogle Scholar
  55. Kapoor RK, Gupta R, Singh A (2013) Patenting trends in bioremediation technologies for oil-contaminated sites. In: Kuhad R, Singh A (eds) Biotechnology for environmental management and resource recovery. Springer, India, pp 289–313CrossRefGoogle Scholar
  56. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kasanke CP, Leigh MB (2017) Factors limiting sulfolane biodegradation in contaminated subarctic aquifer substrate. PLoS One 12(7):e0181462.  https://doi.org/10.1371/journal.pone.0181462 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Khan Z, Anjaneyulu Y (2006) Bioremediation of contaminated soil and sediment by composting. Remediation 16(2):109–122CrossRefGoogle Scholar
  59. Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spillpast, present, and future perspectives. Front Microbiol 5(603).  https://doi.org/10.3389/fmicb.2014.00603
  60. Kingston PF (2002) Long-term environmental impact of oil spills. Spill Sci Technol Bull 7(1–2):53–61CrossRefGoogle Scholar
  61. Kleinsteuber S, Riis V, Fetzer I, Harms H, Muller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72(5):3531–3542PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kostka JE, Prakash O, Overholt W, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen T, Huette M (2011) Hydrocarbon degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kumar A, Janardhan A, Viswanath B, Monika K, Jung J, Narasimha G (2016) Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. Biotech 6(1):43–47Google Scholar
  64. Kundu D, Dutta D, Mondal S, Haque S, Bhakta JN, Jana BB (2017) Application of potential biological agents in green bioremediation. In: Bhakta JN (ed) Handbook of research on inventive bioremediation technology. EUA. IGI Global, pp 300–323Google Scholar
  65. Kuyukina MS, Ivshina IB (2010) Application of rhodococcus in bioremediation of contaminated environments. In: Alvarez HM (ed) Biology of rhodococcus, microbiology monographs 16. Springer-Verlag, Berlin/Heidelberg, pp 231–262.  https://doi.org/10.1007/978-3-642-12937-7_9 CrossRefGoogle Scholar
  66. Lee EH, Kang YS, Cho KS (2011) Bioremediation of diésel contaminated soils by natural attenuation, biostimulation and bioaugmentation employing Rhodococcus sp. EH831. Korean J Microbiol Biotechnol 39(1):86–92Google Scholar
  67. Liu W, Luo Y, Teng Y, Li Z, Ma LQ (2010) Bioremediation of oily sludge contaminated soil by stimulating indigenous microbes. Environ Geochem Health 32(1):23–29PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lorenzo V (2010) Environmental biosafety in the age of Synthetic Biology: Do we really need a radical new approach? Environmental fates of microorganisms bearing synthetic genomes could be predicted from previous data on traditionally engineered bacteria for in situ bioremediation. BioEssays 32:926–931PubMedCrossRefPubMedCentralGoogle Scholar
  69. Luqueño F, Encinas VC, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil-possibilities and challenges: A review. Environ Sci Pollut Res 18:12–30Google Scholar
  70. Mahmutoglu I, Pei L, Porcar M, Armstrong R, Bedau M (2010) Bioremediation. In: Schmidt M (ed) Synthetic biology industrial and environmental applications. Wiley-VCH Verlag GmbH and Co. Kga, pp 67–101Google Scholar
  71. Major DW, Mcmaster ML, Cox EC, Edwards EA, Dworatzek SM, Hendrickson EW, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116PubMedCrossRefPubMedCentralGoogle Scholar
  72. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663PubMedPubMedCentralCrossRefGoogle Scholar
  73. Martins VG, Kalil SJ, Costa JAV (2009) In situ bioremediation using biosurfactant produced by solid state fermentation. World J Microbiol Biotechnol 25:843–851CrossRefGoogle Scholar
  74. Maruyama A, Ishiwata H, Kitamura K, Sunamura M, Fujita T, Matsuo M, Higashihara T (2003) Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46:442–453PubMedCrossRefPubMedCentralGoogle Scholar
  75. Marykensa V (2011) Bioremediation - An Overview. J Ind Poll Cont 27(2):161–168Google Scholar
  76. McGenity TJ (2014) Hydrocarbon biodegradation in intertidal wetland sediments. Curr Opinion Biotechnol 27:46–54PubMedPubMedCentralCrossRefGoogle Scholar
  77. McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude oil biodegradation: a central role for interspecies interactions. Aquatic Biosystems 8(1):10–19PubMedPubMedCentralCrossRefGoogle Scholar
  78. McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mei H, Yin Y (2009) Studies on marine oil spills and their ecological damage. J Ocean Univ China (Oceanic and Coastal Sea Research) 8(3):312–316CrossRefGoogle Scholar
  80. Menn FM, Easter JP, Sayler GS (2008) Genetically engineered microorganisms and bioremediation. In: Rehm HJ, Reed G (eds) Biotechnology: environmental processes II, 2nd edn. Wiley-VCH Verlag GmbH, Germany, p 11bCrossRefGoogle Scholar
  81. Morgante V, López-López A, Flores C, González M, González B, Vásquez M, Rosselló-Mora R, Seeger M (2010) Bioaugmentation with Pseudomonas sp. Strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils. FEMS Microbiol Ecol 71:114–126Google Scholar
  82. Nakano M, Kihara M, Iehata S, Tanaka R, Maeda H, Yoshikawa T (2011) Wax ester-like compounds as biosurfactants produced by Dietzia maris from n-alkane as a sole carbon source. J Basic Microbiol 51:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  83. Naseri M, Barabadi A, Barabady J (2014) Bioremediation treatment of hydrocarbon contaminated Arctic soils: influencing parameters. Environ Sci Pollut Res 21(19):11250–11265CrossRefGoogle Scholar
  84. Nikolopoulou M, Kalogerakis N (2008) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar Pollut Bull 56(11):1855–1861PubMedCrossRefPubMedCentralGoogle Scholar
  85. Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically pollutedmarine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807CrossRefGoogle Scholar
  86. Ojeda-Morales M, Hernández-Rivera J, Martínez-Vázquez Y, Córdova-Bautista, Hernández-Cardeño Y (2013) Optimal parameters for in vitro development of the fungus hydrocarbonoclastic penicillium sp. Adv Chem Eng Sci 3(4ª):19–29CrossRefGoogle Scholar
  87. Onweremadu EU (2014) Selected bioremediation techniques in polluted tropical soils. In: Hernandez-Soriano MC (ed) Environmental risk assessment of soil contamination, InTech. Rijek, Croatia, pp 337–359Google Scholar
  88. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Enviornmental applications of biosurfactants: recent advances. Int J Mol Sci 3:633–654CrossRefGoogle Scholar
  89. Palma E, Daghio M, Franzetti A, Papini MP, Aulenta F (2017) The bioelectric well: a novel approach for in situ treatment of hydrocarbon contaminated groundwater. Microb Biotechnol.  https://doi.org/10.1111/1751-7915.12760 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pearson WH, Fleece WC (2014) Biophysical environments do recover from oil spills effects. In: Clinfton A (ed) Chapter 1, oil spills: environmental issues, prevention and cological impacts. Nova Publishers, NYGoogle Scholar
  91. Perelo LW (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Material 177:81–89PubMedCrossRefGoogle Scholar
  92. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302(5653):2082–2086PubMedCrossRefGoogle Scholar
  93. Plangklang P, Reungsang A (2011) Bioaugmentation of carbofuran residues in soil by Burkholderia cepacia PCL3: A small-scale field study. Int Biodeterioration Biodegrad 65:902–905CrossRefGoogle Scholar
  94. Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants—past, present, and future scenario of global market. Front Microbiol 5:454.  https://doi.org/10.3389/fmicb.2014.00454 CrossRefGoogle Scholar
  95. Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles. 2014, Article ID 431787, 7 pGoogle Scholar
  96. Salleh AB, Ghazali FM, Rahman R, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution Indian. J Biotech 2:411–425Google Scholar
  97. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248CrossRefPubMedPubMedCentralGoogle Scholar
  98. Sanni GO, Coulon F, McGenity TJ (2015) Dynamics and distribution of bacterial and archaeal communities in oilcontaminated temperate coastal mudflat mesocosms. Environ Sci Pollut Res Int 22(20):15230–15247PubMedCrossRefGoogle Scholar
  99. Santisi S, Cappello S, Catalfamo M, Mancini G, Hassanshahian M, Genovese L, Giuliano L, Yakimov MM (2015) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Braz J Microbiol 46(2):377–387PubMedPubMedCentralCrossRefGoogle Scholar
  100. Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS (2010) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350CrossRefGoogle Scholar
  101. Santos HF, Cury JC, Carmo FL, Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3):e16943PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502PubMedPubMedCentralCrossRefGoogle Scholar
  103. Shekhar SK, Godheja J, Modi DR (2015) Hydrocarbon bioremediation efficiency by five indigenous bacterial strains isolated from contaminated soils. Int J Curr Microbiol Appl Sci 4(3):892–905Google Scholar
  104. Silva CC, Oliveira VM (2018) Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int Biodeterior Biodegrad 126:231–242Google Scholar
  105. Sonawdekar S (2012) Bioremediation: A boon to hydrocarbon degradation. Int J Environ Sci 2(4):2408–2424Google Scholar
  106. Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802CrossRefGoogle Scholar
  107. Thapa B, Kumar KCA, Ghimire A (2012) A Review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu university journal of science. Eng Technol 8(1)CrossRefGoogle Scholar
  108. Tuo BH, Yan JB, Fan B, Yang ZH, Liu JZ (2012) Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresour Technol 107:55–60PubMedCrossRefPubMedCentralGoogle Scholar
  109. Tyagi MM, Fonseca MR, Carvalho CCC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241PubMedPubMedCentralCrossRefGoogle Scholar
  110. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503.  https://doi.org/10.1128/MMBR.67.4.503-549 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Verma JP, Jaiswal DK (2016) Book review: advances in biodegradation and bioremediation of industrial waste. FrontMicrobiol 6:1555–1562Google Scholar
  112. Vieites DR, Nieto-Román S, Palanca A, Ferrer X, Vences M (2004) European Atlantic: the hottest oil spill hotspot worldwide. Naturwissenschaften 91(11):535–538PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wang J, Wang J, Zhang Z, Li Y, Zhang B, Zhang Z, Zhang G (2015) Cold adapted bacteria for bioremediation of crude oil-contaminated soil. J Chem Technol Biotechnol 91:2286–2297CrossRefGoogle Scholar
  114. Wieczorek A, Dias-Brito D, Milanelli JCC (2007) Mapping oil spill environmental sensitivity in Cardoso Island State Park and surroundings areas, São Paulo, Brazil. Ocean Coast Manag 50:872–886CrossRefGoogle Scholar
  115. Xue J, Yu Y, Bai Y, Wang L, Wu L (2015) Marine oil degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A Review. Curr Microbiol 71(2):220–228PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348PubMedCrossRefPubMedCentralGoogle Scholar
  117. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil degrading marine bacteria. Curr Opinion Biotechnol 18(3):257–266PubMedCrossRefGoogle Scholar
  118. Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381CrossRefGoogle Scholar
  119. Ye JS, Yin H, Qiang J, Peng H, Qin HM, Zhang N, He BY (2011) Biodegradation of anthracene by Aspergillus fumigatus. J Hazard Mater 185(1):174–181PubMedCrossRefPubMedCentralGoogle Scholar
  120. Yu S, Li S, Tang Y, Wu X (2011) Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. J Environ Sci 23(9):1533–1543CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bruna Martins Dellagnezze
    • 1
  • Milene Barbosa Gomes
    • 1
  • Valéria Maia de Oliveira
    • 1
  1. 1.Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA)Campinas UniversityCampinasBrazil

Personalised recommendations