The Role of Microbes Toward Biodegradation of Hydrocarbons

  • Varsha Dogra
  • Rajeev Kumar
  • Sandeep Kumar
  • Gurpreet KaurEmail author


Environment contamination by hydrocarbons (HC) has caused lots of implications and the use of HCs has been increasing over the years due to their several applications in different industries. HCs are compounds composed of hydrogen and carbon; it is described as an enormous contaminant with carcinogenic, mutagenic, and toxicity potential for the flora and fauna. HCs are very difficult to get rid of the environment as they are difficult to degrade. Accidental release of the petroleum products leads to the degradation of the environment. Oil spills in the ocean, crude oil-carrying pipeline leakages, production of by-products, and HC refining lead to environment pollution which is causing loss of biodiversity. The search for the natural methods for the degradation of HCs and their by-products has increased with the advancement of technologies as they are creating lots of environmental problems. In this book chapter, we have tried to sum up all the environment-friendly remediation methods for the removal of HCs such as phytoremediation, rhizoremediation, bioaugmentation, and bioremediation by enzymes, algae, bacteria, fungi, microbial consortium, and protozoans.



G.K. is thankful to DST for Inspire Faculty award (IFA-12-CH-41) and PURSE grant II. R.K. is thankful to DST, SERB/F/8171/2015-16, as well as UGC (F. No. 194-2/2016 IC) for providing financial support. V.D. is thankful to UGC for JRF.


  1. Atlas R, Ronald M (1991) Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol 2:149–156Google Scholar
  2. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  3. Bartha R (1986) Biotechnology of petroleum pollutant biodegradation. Microb Ecol 12(1):155–172PubMedCrossRefGoogle Scholar
  4. Beam HW, Perry JJ (1974) Microbial degradation of cycloparaffinic hydrocarbons via cometabolism and commensalism. J Gen Microbiol 82(1):163–169CrossRefGoogle Scholar
  5. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71PubMedCrossRefGoogle Scholar
  6. Cerniglia CE, Van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. Microbiology 116(2):485–494CrossRefGoogle Scholar
  7. Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143CrossRefGoogle Scholar
  8. Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261CrossRefGoogle Scholar
  9. Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep-sea sediments of the middle Atlantic ridge. Environ Microbiol 10(8):2138–2149PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78(20):7309–7316PubMedPubMedCentralCrossRefGoogle Scholar
  11. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13Google Scholar
  12. Di Cello F, Pepi M, Baldi F, Fani R (1997) Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus. Res Microbiol 148(3):237–249PubMedCrossRefGoogle Scholar
  13. Dzomback DA, Luthy RG (1984) Estimating adsorption of polycyclic aromatic hydrocarbons on soils. Soil Sci 137(5):292–308CrossRefGoogle Scholar
  14. Erickson LE, Davis LC, Narayanam M (1995) Bioenergetics and bioremediation of contaminated soil. Thermochim Acta 250:353–358CrossRefGoogle Scholar
  15. Eweis JB, Ergas SJ, Chang DPY, Schroeder ED (1998) Biodegradation of selected compounds. In: Bioremediation principles. McGraw-Hill International, Singapore, pp 120–135Google Scholar
  16. Garcia MT, Gallego V, Ventosa A, Mellado E (2005) Thalassobacillus devorans gen. Nov., sp. nov., a moderately halophilic, phenol-degrading, gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795CrossRefGoogle Scholar
  17. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 4:568–576Google Scholar
  18. Gibson DT (1988) Microbial metabolism of aromatic hydrocarbon and the carbon cycle. In: Microbial metabolism and the carbon cycle. Harwood Academic Publishers, ChurGoogle Scholar
  19. Gibson DT, Cardini GE, Maseles FC, Kallio RE (1970) Oxidative degradation of aromatic hydrocarbons by microorganisms. IV. Incorporation of oxygen- 18 into benzene by pseudomonas putida. Biochemist 9(7):1631–1635CrossRefGoogle Scholar
  20. Goyal AK, Zylstra GJ (1996) Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comernones tastostaroni 6239. Appl Environ Microbiol 62:230–236PubMedPubMedCentralGoogle Scholar
  21. Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ (1995) Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol 61:3711–3723PubMedPubMedCentralGoogle Scholar
  22. Grimaud R, Ghiglione JF, Cagnon C, Lauga V, Vaysse PJ, Rodriguez-Blanco A, Mangenot S, Cruveiller S, Barbe V, Duran R, Wu LF (2012) Genome sequence of the marine bacterium Marinobacter hydrocarbonoclasticus SP17, which forms biofilms on hydrophobic organic compounds. J Bacteriol 194(13):3539–3540PubMedPubMedCentralCrossRefGoogle Scholar
  23. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15PubMedCrossRefGoogle Scholar
  24. Heitkamp MA, Cerniglia CE (1966) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614Google Scholar
  25. Iwabuchi T, Inomata-Yamauchi Y, Katsuta A, Harayama S (1998) Isolation and characterization of marine Nocardioides capable of growing and degrading phenanthrene at 42-C. J Mar Biotechnol B 6:86–90Google Scholar
  26. Kaldalu M, Toots U, De Lorenzo V, Ustav M (2000) Functional domains of the TOL plasmid transcription factor XyIS. J Bacteriol 4:1118–1126CrossRefGoogle Scholar
  27. Kerr RP, Capone DG (1988) Effect of salinity on microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Resour 3:181–198CrossRefGoogle Scholar
  28. Kothari V, Panchal M, Srivastava N (2013) Microbial degradation of hydrocarbons. Institute of Science, Nirma University, AhmedabadGoogle Scholar
  29. Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Publ Health 6(4):1393–1417CrossRefGoogle Scholar
  30. Maier RM (2000) Microorganisms and organic pollutants. In: Environmental microbiology. Academic, San Diego, pp 363–400Google Scholar
  31. Matavulj M, Molitoris HP (2009) Marine fungi: degraders of poly-3-hydroxyalkanoate based plastic materials. Zbornik Matice srpske za prirodne nauke 116:253–265CrossRefGoogle Scholar
  32. Mattison RG, Taki H, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150PubMedCrossRefGoogle Scholar
  33. McEldowney S, Hardman DJ, Waite S (1993) Pollution: ecology and biotreatment. Longman Scientific & Technical, HarlowGoogle Scholar
  34. Meulenberg R, Rijnaarts HHHM, Doddema HJ, Field JA (1997) Partially oxidised polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49PubMedCrossRefGoogle Scholar
  35. Miranda RDC, de Souza CS, Gomes EDB, Lovaglio RB, Lopes CE, de Queiroz Sousa MDFV (2007) Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the state of Pernambuco-Brazil. Braz Arch Biol Technol 50:147–152CrossRefGoogle Scholar
  36. Miya RK, Firestone MK (2000) Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass. J Environ Qual 29:584–592CrossRefGoogle Scholar
  37. Mortberg M, Neujahr HY (1985) Uptake of phenol by Trichosporon cutaneum. J Bacteriol 161:615–619PubMedPubMedCentralGoogle Scholar
  38. Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–l066PubMedPubMedCentralGoogle Scholar
  39. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61(3):261–267PubMedCrossRefGoogle Scholar
  40. Neder LdTC, Quintao SLdS, Santos AS (2004) Native semi-arid colonizing plants for phytoremediation of heavy metal- and PAH-contaminated soil. In: Monterey CA, Gavaskar AR, Chen ASC (eds) Fourth international conference on remediation of chlorinated and recalcitrant compounds. Battelle Press, ColumbusGoogle Scholar
  41. Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut 95:165–178Google Scholar
  42. Park KS, Sims RC, Dupont RR (1990) Transformation of PAHs in soil systems. J Environ Eng 3:632–640CrossRefGoogle Scholar
  43. Reddy BR, Sethunathan N (1994) Mineralization of p-nitrophenol in the rhizosphere of rice. Agric Ecosyst Environ 47:313–317CrossRefGoogle Scholar
  44. Rochkind-Dubinsky ML, Blackburn JW, Sayler GS (1986) Microbial decomposition of chlorinated aromatic compounds. Hazardous Waste Engineering Research Laboratory, Office of Research and Development, US Environmental Protection Agency, CincinnatiGoogle Scholar
  45. Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae adherence and growth of Acinetobacter calcoaceticusRAG-1 on hexadecane. Appl Environ Microbiol 4:929–937Google Scholar
  46. Sierra-Garcia IN, de Oliveira VM (2013) Microbial hydrocarbon degradation: efforts to understand biodegradation in petroleum reservoirs, biodegradation – engineering and technology, Dr. Rolando Chamy. InTechGoogle Scholar
  47. Söhngen NL (1913) Benzin, Petroleum, Paraffinöl und Paraffin alsKohlenstoff- und Energiequellefür Mikroben. Zentr Bacteriol Parasitenk Abt 37:595–609Google Scholar
  48. Solanki P, Kothari V (2012) Metal tolerance in halotolerant bacteria isolated from saline soil of Khambhat. Res Biotechnol 3:1–11Google Scholar
  49. Sonawdekar S (2012) Bioremediation: a boon to hydrocarbon degradation. Int J Environ Sci 2:2408–2424Google Scholar
  50. Spellman FR (2008) Ecology for non-ecologists, 1st edn. Government Institutes, USA. ISBN: 13: 978-0865871977, 364Google Scholar
  51. Stapleton RD Jr, Singh VP (eds) (2002) Biotransformations: bioremediation technology for health and environmental protection, vol 36. Elsevier, AmsterdamGoogle Scholar
  52. Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62PubMedCrossRefGoogle Scholar
  53. Sutherland JB, Rafii FA, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. Microbial transformation and degradation of toxic organic chemicals, vol 15, p 269Google Scholar
  54. Teramoto M, Suzuki M, Okazaki F, Hatmanti A, Harayama S (2009) Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155(10):3362–3370PubMedCrossRefGoogle Scholar
  55. Tsao DT (2003) Overview of phytotechnologies. Advances in biochemical engineering biotechnology, vol 78. Springer, New York, pp 1–50Google Scholar
  56. Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70PubMedCrossRefGoogle Scholar
  57. Van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 3:308–314CrossRefGoogle Scholar
  58. Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21PubMedCrossRefGoogle Scholar
  59. Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res 50:1056–1061Google Scholar
  60. Widdel F, Musat F (2010) Diversity and common principles in enzymatic activation of hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 981–1009CrossRefGoogle Scholar
  61. Wilson S, Jones K (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs) – a review. Environ Pollut 81:229–249PubMedCrossRefGoogle Scholar
  62. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant producing marine bacterium. Int J Syst Evol Microbiol 2:339–348Google Scholar
  63. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 6:2101–2106Google Scholar
  64. Zhou YY, Chen DZ, Zhu RY, Chen JM (2011) Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Bioresour Technol 102(12):6644–6649PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Varsha Dogra
    • 1
  • Rajeev Kumar
    • 1
  • Sandeep Kumar
    • 2
  • Gurpreet Kaur
    • 3
    Email author
  1. 1.Department of Environment StudiesPanjab UniversityChandigarhIndia
  2. 2.Department of Bio and Nano TechnologyGuru Jambheshwar University of Science & TechnologyHisarIndia
  3. 3.Department of Chemistry and Centre of Advanced studies in ChemistryPanjab UniversityChandigarhIndia

Personalised recommendations