Petroleum Microbiology Under Extreme Conditions

  • Oluwadara Oluwaseun Alegbeleye


Petroleum contamination of environmental matrices is a pervasive, global problem. Crude oil exploration, processing, handling and transport release significant amounts of petro-hydrocarbons into the ecosystem. Many petro-compounds are recognized or suspected as carcinogens, mutagens and teratogens and, therefore, pose significant risks to human and ecosystem health. Petroleum hydrocarbon pollution constitutes an enormous challenge when areas with suboptimal environmental conditions are contaminated. This is because these regions are characterized by the occurrence of delicate ecosystems and because remedial efforts tend to be frustrated, owing to the unfavourable climatic and environmental conditions. Due to extensive petroleum exploration in some of these areas, petroleum hydrocarbon contamination occurs frequently, degrading the environment. Efficacious, sustainable abatement strategies are therefore, necessary to mitigate contamination.

Over time, several treatment schemes and strategies for the replenishment of petroleum-contaminated sites have been designed, optimized and implemented. Many conventional techniques and technologies, however, have well-known drawbacks. This has prompted research into eco-friendly and economical cleaning alternatives. Biological remediation is interesting choice, which has been the widespread research topic and has been adopted in many parts of the world because of its (comparative) low-cost, minimal environmental impacts and public acceptance. Here, the general sources of petroleum hydrocarbons into the environment are explored as well as the effects of physicochemical and environmental factors on the transportation, microbiology and overall fate of petro-products in environmental matrices. The potential of petroleum hydrocarbon biodegradation under extreme environmental conditions is considered with an emphasis on the effects of unfavourable salinity, temperature, moisture, oxygen, nutrient, pressure and pH conditions. The roles of extremophiles in petroleum hydrocarbon biodegradation in extreme environments are also discussed. The influence of biosurfactants and the capacity of extremophiles to produce these under extreme environmental conditions are discussed as well as the relevance of bioaugmentation and biostimulation. Bioavailability, which influences the overall rate and efficiency of bioremediation protocols, is also considered.



The author gratefully acknowledges the financial support of Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) (award grant number 148279/2017-1).


  1. Abed RMM, Al-Thukair A, de Beer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57:290–301CrossRefGoogle Scholar
  2. Abed RMM, Al-Kharusi S, Prigent S, Headley T (2014) Diversity, distribution and hydrocarbon biodegradation capabilities of microbial communities in oil-contaminated cyanobacterial mats from a constructed wetland. PLoS One 9:e114570CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aislabie J, McLeod M, Fraser R (1998) Potential for biodegradation of hydrocarbons in soil from the Ross dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214CrossRefGoogle Scholar
  4. Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188CrossRefGoogle Scholar
  5. Aislabie JM, Ryburn J, Gutierrez-Zamora ML, Rhodes P, Hunter D, Sarmah AK, Barker GM, Farrell RL (2012) Hexadecane mineralization activity in hydrocarbon-contaminated soils of Ross Sea region Antarctica may require nutrients and inoculation. Soil Biol Biochem 45:49–60CrossRefGoogle Scholar
  6. Albrechtsen H, Christensen TH (1994) Evidence for microbial iron reduction in a landfill leachate-polluted aquifer (Vejen, Denmark). Appl Environ Microbiol 60:3920–3925PubMedPubMedCentralGoogle Scholar
  7. Al-Daher R, Al-Awadhi N, El-Nawawy A (1998) Bioremediation of damaged desert environment using the windrow soil pile system in Kuwait. Environ Int 24:175–180CrossRefGoogle Scholar
  8. Alegbeleye OO (2015) Bioremediation of polycyclic aromatic hydrocarbons (PAHs) in water using indigenous microbes of Diep- and Plankenburg Rivers, Western Cape, South Africa, thesis. Cape Peninisula University of TechnologyGoogle Scholar
  9. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego, pp 325–327Google Scholar
  10. Al-Hadhrami MN, Lappin-Scott HM, Fisher PJ (1996) Effects of the addition of organic carbon sources on bacterial respiration and n-alkane biodegradation of Omani crude oil. Mar Pollut Bull 32:351–357CrossRefGoogle Scholar
  11. Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470CrossRefPubMedGoogle Scholar
  12. Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7CrossRefGoogle Scholar
  13. Al-Sarawi HA, Jha AN, Al-Sarawi MA, Lyons BP (2015) Historic and contemporary contamination in the marine environment of Kuwait: an overview. Mar Pollut Bull 100:621–628CrossRefGoogle Scholar
  14. Amadi A, Abbey SD, Nma A (1996) Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria. Water Air Soil Pollut 86:1–11CrossRefGoogle Scholar
  15. Arcangeli JP, Arvin E (1994) Biodegradation of BTEX compounds in a biofilm system under nitrate reducing conditions. Lewis Publishers, Boca Raton, pp 374–382Google Scholar
  16. Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30(3):396–403PubMedPubMedCentralGoogle Scholar
  17. Atlas RM (1979) Measurement of hydrocarbon biodegradation potentials and enumeration of hydrocarbon-utilizing microorganisms using carbon-14 hydrocarbon-spiked crude oil. In: Native aquatic bacteria: enumeration, activity, and ecology. ASTM International, PhiladelphiaGoogle Scholar
  18. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209PubMedPubMedCentralGoogle Scholar
  19. Atlas RM (1991) Bioremediation of fossil fuel contaminated soils. In: In situ bioreclamation. Butterworth-Heinemann, Stoneham, pp 14–32CrossRefGoogle Scholar
  20. Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182CrossRefGoogle Scholar
  21. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318CrossRefGoogle Scholar
  22. Atlas RM, Bartha R (1973) Abundance, distribution and oil biodegradation potential of micro-organisms in Raritan Bay. Environ Pollut 1970 4:291–300Google Scholar
  23. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715CrossRefPubMedPubMedCentralGoogle Scholar
  24. Atlas R, Horowitz A, Busdosh M (1978) Prudhoe crude oil in Arctic marine ice, water, and sediment ecosystems: degradation and interactions with microbial and benthic communities. J Fish Res Board Can 35:585–590CrossRefGoogle Scholar
  25. Atlas RM, Raymond RL (1977) Stimulated petroleum biodegradation. CRC Crit Rev Microbiol 5(4):371–386CrossRefGoogle Scholar
  26. Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O (2017) Aerobic and anaerobic fungal metabolism and omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31:61–72CrossRefGoogle Scholar
  27. Balba MT, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173CrossRefGoogle Scholar
  28. Bakermans C, Hohnstock-Ashe AM, Padmanabhan S, Padmanabhan P, Madsen EL (2002) Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microb Ecol 44:107–117CrossRefGoogle Scholar
  29. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  30. Barret M, Carrère H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or co-metabolism limit their biodegradation? Water Res 44(13):3797–3806CrossRefGoogle Scholar
  31. Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Nostrand JDV, Zhou J et al (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater horizon oil spill. PLoS One 7:e41305CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bian XY, Mbadinga SM, Liu YF, Yang SZ, Liu JF, Ye RQ, Gu JD, Mu BZ (2015) Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites. Sci Rep 5:9801CrossRefPubMedPubMedCentralGoogle Scholar
  33. Birch GF (2017) Determination of sediment metal background concentrations and enrichment in marine environments – a critical review. Sci Total Environ 580:813–831CrossRefGoogle Scholar
  34. Blanchet D, Grabowski A, Vandecasteele J (2001) Microbiology of oil degradation in reservoirs. Society of Petroleum EngineersGoogle Scholar
  35. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefPubMedGoogle Scholar
  36. Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505CrossRefPubMedPubMedCentralGoogle Scholar
  37. Borzenkov IA, Milekhina EI, Gotoeva MT, Rozanova EP, Belyaev SS (2006) The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, western Siberia, and Vietnam. Microbiology 75:66–72CrossRefGoogle Scholar
  38. Bosch R, Garcıa-Valdés E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157CrossRefGoogle Scholar
  39. Botero LM, Brown KB, Brumefield S, Burr M, Castenholz RW, Young M, McDermott TR (2004) Thermobaculum terrenum gen. nov., sp. nov.: a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 181(4):269–277CrossRefGoogle Scholar
  40. Braddock JF, Ruth ML, Catterall PH, Walworth JL, McCarthy KA (1997) Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environ Sci Technol 31:2078–2084CrossRefGoogle Scholar
  41. Bradley PM, Chapelle FH (1995) Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: implications for intrinsic bioremediation in cold environments. Environ Sci Technol 29:2778–2781CrossRefGoogle Scholar
  42. Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Psychrophiles: from biodiversity to biotechnology. Springer, Berlin/Heidelberg, pp 389–407CrossRefGoogle Scholar
  43. Broderick LS, Cooney JJ (1982) Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev Ind Microbiol USAGoogle Scholar
  44. Brown LD, Cologgi DL, Gee KF, Ulrich AC (2017) Chapter 12: bioremediation of oil spills on land. In: Fingas M (ed) Oil spill science and technology, 2nd edn. Gulf Professional Publishing, Boston, pp 699–729CrossRefGoogle Scholar
  45. Buzzini P, Margesin R (2014) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Cold-adapted yeasts. Springer, Berlin/Heidelberg, pp 3–22CrossRefGoogle Scholar
  46. Camenzuli D, Freidman BL (2015) On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Res 34:24492CrossRefGoogle Scholar
  47. Cameotra SS, Bollag JM (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit Rev Environ Sci Technol 33(2):111–126CrossRefGoogle Scholar
  48. Castaldini F (2008) Bioremediation of PAHs – limitations and solutions. Universita Di Bologna Alma Mater Digital Library, pp 230–256.Google Scholar
  49. Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in Archaea. Extremophiles 4(6):321–331CrossRefGoogle Scholar
  50. Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283:23–29CrossRefGoogle Scholar
  51. Chadrankant SK, Shwetha SR (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 11:1–11Google Scholar
  52. Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431CrossRefGoogle Scholar
  53. Chevron Cottin N, Merlin G (2007) Study of pyrene biodegradation capacity in two types of solid media. Sci Total Environ 380:116–123CrossRefGoogle Scholar
  54. Chugunov VA, Ermolenko ZM, Zhigletsova SK, Martovetskaya II, Mironova RI, Zhirkova NA, Kholodenko VP, Urakov NN (2000) Development and application of a liquid preparation with oil-oxidizing Bacteria. Appl Biochem Microbiol 36:577–581CrossRefGoogle Scholar
  55. Chuvilin EM, Yershov ED, Naletova NS, Miklyaeva ES (2000) The use of permafrost for the storage of oil and oil products and the burial of toxic industrial wastes in the Arctic. Polar Rec 36:211–214CrossRefGoogle Scholar
  56. Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310CrossRefGoogle Scholar
  57. Collins CM, Racine CH, Walsh ME (1993) Fate and effects of crude oil spilled on subarctic permafrost terrain in interior Alaska: fifteen years later. Cold Regions Research and Engineering Lab HanoverGoogle Scholar
  58. Colwell RR, Mills AL, Walker JD, Garcia-Tello P, Campos-P V (1978) Microbial ecology studies of the Metula spill in the Straits of Magellan. J Fish Res Board Can 35(5):573–580CrossRefGoogle Scholar
  59. Cooney JJ, Silver SA, Beck EA (1985) Factors influencing hydrocarbon degradation in three freshwater lakes. Microb Ecol 11:127–137CrossRefGoogle Scholar
  60. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690CrossRefGoogle Scholar
  61. Cuadros-Orellana S, Pohlschröder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154CrossRefGoogle Scholar
  62. Cundell AM, Traxler RW (1973) Microbial degradation of petroleum at low temperature. Mar Pollut Bull 4(8):125–127CrossRefGoogle Scholar
  63. Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B Biointerfaces 84:292–300CrossRefGoogle Scholar
  64. Das S, Dash HR (2014) Chapter 1: microbial bioremediation: a potential tool for restoration of contaminated areas. In: Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 1–21Google Scholar
  65. Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234CrossRefGoogle Scholar
  66. Davey MC, Pickup J, Block W (1992) Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct Sci 4(4):383–388CrossRefGoogle Scholar
  67. Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. Mar Environ Res 49:403–417CrossRefGoogle Scholar
  68. Delille D, Bassères A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19:237–241CrossRefGoogle Scholar
  69. Díaz MP, Grigson SJW, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading Euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532CrossRefGoogle Scholar
  70. Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79:145–153CrossRefGoogle Scholar
  71. Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739PubMedPubMedCentralGoogle Scholar
  72. Dion P, Nautiyal CS (2007) Microbiology of extreme soils. Springer, BerlinGoogle Scholar
  73. Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J Geophys Res Biogeosci 112:G02030Google Scholar
  74. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908CrossRefPubMedPubMedCentralGoogle Scholar
  75. Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152CrossRefGoogle Scholar
  76. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438CrossRefGoogle Scholar
  77. Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Teniglobus gen nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717CrossRefPubMedPubMedCentralGoogle Scholar
  78. El Fantroussi S, Agathos S (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275CrossRefGoogle Scholar
  79. Engelhardt FR (1994) Limitations and innovations in the control of environmental impacts from petroleum industry activities in the Arctic. Mar Pollut Bull 29:334–341CrossRefGoogle Scholar
  80. Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67(11):5107–5112CrossRefPubMedPubMedCentralGoogle Scholar
  81. Esseen PA, Rönnqvist M, Gauslaa Y, Coxson DS (2017) Externally held water – a key factor for hair lichens in boreal forest canopies. Fungal Ecol 30:29–38CrossRefGoogle Scholar
  82. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173CrossRefPubMedPubMedCentralGoogle Scholar
  83. Fazi S, Butturini A, Tassi F, Amalfitano S, Venturi S, Vazquez E, Clokie M, Wanjala SW, Pacini N, Harper DM (2017) Biogeochemistry and biodiversity in a network of saline–alkaline lakes: implications of ecohydrological connectivity in the Kenyan Rift Valley. Ecohydrol HydrobiolGoogle Scholar
  84. Filler DM, Snape I, Barnes DL (2008) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  85. Floodgate G (1984) The fate of petroleum in marine ecosystem. In: Petroleum microbiology. Macmillion, New York, pp 355–398Google Scholar
  86. Foght JM, McFarlane DM (1999) Growth of extremophiles on petroleum. In: Enigmatic microorganisms and life in extreme environments. Springer, Dordrecht, pp 527–538CrossRefGoogle Scholar
  87. Fowler SW, Readman JW, Oregioni B, Villeneuve JP, McKay K (1993) Petroleum hydrocarbons and trace metals in nearshore Gulf sediments and biota before and after the 1991 war: an assessment of temporal and spatial trends. Mar Pollut Bull 27:171–182CrossRefGoogle Scholar
  88. Friedmann EI (1982) Endolithic microorganisms in the antarctic cold desert. Science 215:1045–1053CrossRefGoogle Scholar
  89. Friedmann EI (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv Space Res 6:265–268CrossRefGoogle Scholar
  90. Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–706CrossRefGoogle Scholar
  91. Fuchs DTM, Neuhaus K, Scherer PS (2013) Life at low temperatures. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg, pp 375–420CrossRefGoogle Scholar
  92. Gallego A, O’Hara Murray R, Berx B, Turrell WR, Beegle-Krause CJ, Inall M, Sherwin T, Siddorn J, Wakelin S, Vlasenko V et al (2018) Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges. Mar Pollut Bull 127:484–504CrossRefGoogle Scholar
  93. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549CrossRefGoogle Scholar
  94. Garneau MÈ, Michel C, Meisterhans G, Fortin N, King TL, Greer CW, Lee K (2016) Hydrocarbon biodegradation by Arctic Sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiol Ecol 92Google Scholar
  95. Gibbs CF, Pugh KB, Andrews AR (1975) Quantitative studies on marine biodegradation of oil. II. Effect of temperature. Proc R Soc Lond B Biol Sci 188:83–94CrossRefGoogle Scholar
  96. Gibb A, Chu A, Wong RCK, Goodman RH (2001) Bioremediation kinetics of crude oil at 5 C. J Environ Eng 127(9):818–824CrossRefGoogle Scholar
  97. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341CrossRefGoogle Scholar
  98. Glazier DS (2014) Springs☆. In: Reference module in earth systems and environmental sciences. Elsevier, AmsterdamGoogle Scholar
  99. Godoy-Faúndez A, Antizar-Ladislao B, Reyes-Bozo L, Camaño A, Sáez-Navarrete C (2008) Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile). J Hazard Mater 151:649–657CrossRefGoogle Scholar
  100. Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782CrossRefGoogle Scholar
  101. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:ismej2015239Google Scholar
  102. Gran-Scheuch A, Fuentes E, Bravo DM, Jiménez JC, Pérez-Donoso JM (2017) Isolation and characterization of Phenanthrene degrading Bacteria from diesel fuel-contaminated Antarctic soils. Front Microbiol 8:1634CrossRefPubMedPubMedCentralGoogle Scholar
  103. Grassia GS, McLean KM, Glénat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58CrossRefGoogle Scholar
  104. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. Nov., sp. nov., a novel thermophilic manganese- and Iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Evol Microbiol 47:505–509Google Scholar
  105. Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033CrossRefGoogle Scholar
  106. Gunkel W (1967) Experimentell- ökologische Untersuchungen über die limitierenden Faktoren des mikrobiellen Ölabbaues im marinen Milieu. Helgoländer Wiss Meeresunters 15:210CrossRefGoogle Scholar
  107. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104CrossRefPubMedPubMedCentralGoogle Scholar
  108. Hambrick GA, DeLaune RD, Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol 40:365–369PubMedPubMedCentralGoogle Scholar
  109. Haritash AK, Kaushik CP (2009) Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  110. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192CrossRefGoogle Scholar
  111. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL et al (2010) Deep-Sea oil plume enriches indigenous oil-degrading Bacteria. Science 330:204–208CrossRefGoogle Scholar
  112. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:nature02134Google Scholar
  113. Heath JS, Koblis K, Sager SL (1993) Review of chemical, physical, and toxicologic properties of components of total petroleum hydrocarbons. J Soil Contam 2:1–25CrossRefGoogle Scholar
  114. Hong S, Khim JS, Ryu J, Kang SG, Shim WJ, Yim UH (2014) Environmental and ecological effects and recoveries after five years of the Hebei Spirit oil spill, Taean, Korea. Ocean Coast Manag 102:522–532CrossRefGoogle Scholar
  115. Horowitz A, Atlas RM (1977) Continuous open flow-through system as a model for oil degradation in the Arctic Ocean. Appl Environ Microbiol 33:647–653PubMedPubMedCentralGoogle Scholar
  116. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Evol Microbiol 49:367–375Google Scholar
  117. Inakollu S, Hung HC, Shreve GS (2004) Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environ Eng Sci 21:463–469CrossRefGoogle Scholar
  118. Jackson A, Pardue JH (1997) Seasonal variability of crude oil respiration potential in salt and fresh marshes. J Environ Qual 26(4):1140–1146CrossRefGoogle Scholar
  119. Jannasch HW (1967) Growth of marine Bacteria at limiting concentrations of organic carbon in Seawater1. Limnol Oceanogr 12:264–271CrossRefGoogle Scholar
  120. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621CrossRefGoogle Scholar
  121. Jiang C, Yu G, Li Y, Cao G, Yang Z, Sheng W, Yu W (2012) Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan plateau explains plant adaptation to nutrient-poor environment. Ecol Eng 44:1–9CrossRefGoogle Scholar
  122. Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of crude oil. Appl Microbiol 23:1082–1089PubMedPubMedCentralGoogle Scholar
  123. John RC, Okpokwasili GC (2012) Crude oil-degradation and plasmid profile of nitrifying Bacteria isolated from oil-impacted mangrove sediment in the Niger Delta of Nigeria. Bull Environ Contam Toxicol 88:1020–1026CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kadri T, Magdouli S, Rouissi T, Brar SK (2018) Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem Eng J 132:279–287CrossRefGoogle Scholar
  125. Kanekar PP, Sarnaik SS, Kelkar AS (1998) Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar, India. J Appl Microbiol 85:128S–133SCrossRefGoogle Scholar
  126. Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabarti T, Khanna P (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67:241–245CrossRefGoogle Scholar
  127. Kappen L, Sommerkorn M, Schroeter B (1995) Carbon acquisition and water relations of lichens in polar regions – potentials and limitations. Lichenologist 27:531–545Google Scholar
  128. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187CrossRefPubMedPubMedCentralGoogle Scholar
  129. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala VR, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249CrossRefGoogle Scholar
  130. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330CrossRefGoogle Scholar
  131. Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct Alp Res 25:308–315CrossRefGoogle Scholar
  132. Kerr RP, Capone DG (1988) The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Res 26:181–198CrossRefGoogle Scholar
  133. Killham K (1994) Soil ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  134. Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75(3):521CrossRefGoogle Scholar
  135. Kosek K, Polkowska Ż, Żyszka B, Lipok J (2016) Phytoplankton communities of polar regions-diversity depending on environmental conditions and chemical anthropopressure. J Environ Manag 171:243–259CrossRefGoogle Scholar
  136. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading Bacteria and the bacterial community response in Gulf of Mexico Beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974CrossRefPubMedPubMedCentralGoogle Scholar
  137. Krumholz LR, Sharp R, Fishbain SS (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113PubMedPubMedCentralGoogle Scholar
  138. Kushner DJ (1978) Microbial life in extreme environments. Academic Press, LondonGoogle Scholar
  139. Kuwayama Y, Olmstead SM, Krupnick A (2013) Water resources and unconventional fossil fuel development: linking physical impacts to social costs. Social Science Research Network, RochesterGoogle Scholar
  140. Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ Int 31:155–161CrossRefGoogle Scholar
  141. Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38CrossRefGoogle Scholar
  142. Langenbach T (2013) Persistence and bioaccumulation of persistent organic pollutants (POPs). In: Patil YB, Rao P (eds) Agricultural and biological sciences; applied bioremediation- active and passive approaches, pp 223-229. ISBN 978-953-51-1200-6Google Scholar
  143. Ławniczak Ł, Marecik R, Chrzanowski Ł (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339CrossRefPubMedPubMedCentralGoogle Scholar
  144. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  145. Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22Google Scholar
  146. L’haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377(6546):223CrossRefGoogle Scholar
  147. Li X, Zhao Q, Wang X, Li Y, Zhou Q (2018) Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. J Hazard Mater 344:23–32CrossRefGoogle Scholar
  148. Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72:7821–7828CrossRefPubMedPubMedCentralGoogle Scholar
  149. Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19:998–1011CrossRefPubMedPubMedCentralGoogle Scholar
  150. Lin X, Yang B, Shen J, Du N (2009) Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr Microbiol 59:341–345CrossRefPubMedPubMedCentralGoogle Scholar
  151. Logeshwaran P, Megharaj M, Chadalavada S, Bowman M, Naidu R (2018) Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ Technol Innov 10:175–193CrossRefGoogle Scholar
  152. Lu Z, Zeng F, Xue N, Li F (2012) Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci Total Environ 433:50–57CrossRefGoogle Scholar
  153. Ludzack FL, Kinkead D (1956) Persistence of oily wastes in polluted water under aerobic conditions. Ind Eng Chem 48:263–267CrossRefGoogle Scholar
  154. Lundstedt S (2003) Analysis of PAHs and their transformations products in contaminated soil and remedial processesGoogle Scholar
  155. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116CrossRefGoogle Scholar
  156. Maiangwa J, Ali MSM, Salleh AB, Rahman RNZRA, Shariff FM, Leow TC (2015) Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 19:235–247CrossRefGoogle Scholar
  157. Maier RM (2000) Bioavailability and its importance to bioremediation. In: Bioremediation. Springer, Dordrecht, pp 59–78CrossRefGoogle Scholar
  158. Maier RM, Gentry TJ (2015) Chapter 17: microorganisms and organic pollutants. In: Environmental microbiology, 3rd edn. Academic Press, San Diego, pp 377–413CrossRefGoogle Scholar
  159. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  160. Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B (2018) Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J 12:1032–1046CrossRefPubMedPubMedCentralGoogle Scholar
  161. Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3:349–360CrossRefGoogle Scholar
  162. Maltseva O, Oriel P (1997) Monitoring of an alkaline 2,4,6-Trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, Haloalkaliphilic Nocardioides sp. strain M6. Appl Environ Microbiol 63:4145–4149PubMedPubMedCentralGoogle Scholar
  163. Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–870CrossRefGoogle Scholar
  164. Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted alpine soils. Int Biodeterior Biodegrad 46:3–10CrossRefGoogle Scholar
  165. Margesin R (2017) Psychrophiles: from biodiversity to biotechnology. Springer, ChamCrossRefGoogle Scholar
  166. Margesin R, Schinner F (1999) Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere 38:3463–3472CrossRefGoogle Scholar
  167. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefPubMedGoogle Scholar
  168. Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals – fundamental and applied aspects. Naturwissenschaften 94:77–99CrossRefGoogle Scholar
  169. Martínez Álvarez L, Ruberto L, Lo Balbo A, Mac Cormack W (2017) Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica. Sci Total Environ 590–591:194–203CrossRefGoogle Scholar
  170. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras Salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895CrossRefPubMedPubMedCentralGoogle Scholar
  171. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15(10):1325–1335Google Scholar
  172. Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M, de Figueras CG, Rosselló-Móra R, González-Pastor JE (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121CrossRefPubMedPubMedCentralGoogle Scholar
  173. Minai TD, Minoui S, Herfatmanesh A (2012) Effect of salinity on biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) of heavy crude oil in soil. Bull Environ Contam Toxicol 82:179–184CrossRefGoogle Scholar
  174. Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794CrossRefPubMedGoogle Scholar
  175. Mnif S, Chamkha M, Labat M, Sayadi S (2011) Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol 111:525–536CrossRefPubMedGoogle Scholar
  176. Mohn W, Radziminski C, Fortin MC, Reimer K (2001) On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl Microbiol Biotechnol 57:242–247CrossRefGoogle Scholar
  177. Moreno R, Rojo F (2014) Features of pseudomonads growing at low temperatures: another facet of their versatility. Environ Microbiol Rep 6:417–426CrossRefGoogle Scholar
  178. Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. In: Advances in microbial ecology. Springer, Boston, pp 171–198CrossRefGoogle Scholar
  179. Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactant products. Indian Natl Sci Acad 1:31–55Google Scholar
  180. Mykytczuk NCS, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7:ismej20138Google Scholar
  181. Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  182. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L et al (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021CrossRefPubMedPubMedCentralGoogle Scholar
  183. Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743CrossRefGoogle Scholar
  184. Nie Y, Fang H, Li Y, Chi CQ, Tang YQ, Wu XL (2013) The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1T reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment. PLoS One 8:e70986CrossRefPubMedPubMedCentralGoogle Scholar
  185. Nievas ML, Commendatore MG, Esteves JL, Bucalá V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104CrossRefGoogle Scholar
  186. Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622PubMedPubMedCentralGoogle Scholar
  187. Novitsky JA, Morita RY (1977) Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol 33:635–641PubMedPubMedCentralGoogle Scholar
  188. Novitsky JA, Morita RY (1978) Possible strategy for the survival of marine bacteria under starvation conditions. Mar Biol 48:289–295CrossRefGoogle Scholar
  189. Nwinyi OC, Olawore YA (2017) Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels. Environ Technol Innov 8:373–388CrossRefGoogle Scholar
  190. Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Omotayo AE, Amund OO (2009) Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol 25:1615–1623CrossRefGoogle Scholar
  191. Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228CrossRefPubMedPubMedCentralGoogle Scholar
  192. Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7CrossRefGoogle Scholar
  193. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2CrossRefPubMedPubMedCentralGoogle Scholar
  194. Oren DA (2011) Diversity of halophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 309–325CrossRefGoogle Scholar
  195. Oren A (2013) Life at high salt concentrations. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes – prokaryotic communities and ecophysiology. Springer-Verlag, Berlin/Heidelberg, pp 421–440. Scholar
  196. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3(2–3):387–398CrossRefGoogle Scholar
  197. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711CrossRefPubMedPubMedCentralGoogle Scholar
  198. Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M (2013) Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? J Hazard Mater 261:733–745CrossRefGoogle Scholar
  199. Oudot J (1984) Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13:277–302CrossRefGoogle Scholar
  200. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefPubMedPubMedCentralGoogle Scholar
  201. Pantsyrnaya T, Blanchard F, Delaunay S, Goergen JL, Guédon E, Guseva E, Boudrant J (2011) Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere 83:29–33CrossRefGoogle Scholar
  202. Patil Y, Rao P (2014) Applied bioremediation – active and passive approaches. Social Science Research Network, RochesterGoogle Scholar
  203. Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279CrossRefPubMedPubMedCentralGoogle Scholar
  204. Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic Press, LondonGoogle Scholar
  205. Peeples TL (2014) Chapter 10: bioremediation using extremophiles. In: Das S (ed) Microbial biodegradation and bioremediation. Oxford, Elsevier, pp 251–268CrossRefGoogle Scholar
  206. Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:475193Google Scholar
  207. Pernetti M, Palma LD (2005) Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ Technol 26:695–704CrossRefGoogle Scholar
  208. Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19CrossRefGoogle Scholar
  209. Polak J, Lu BCY (1973) Mutual Solubilities of hydrocarbons and water at 0 and 25 °C. Can J Chem 51:4018–4023CrossRefGoogle Scholar
  210. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636CrossRefGoogle Scholar
  211. Prieur D, Marteinsson VT (1998) Prokaryotes living under elevated hydrostatic pressure. In: Biotechnology of extremophiles. Springer, Berlin/Heidelberg, pp 23–35CrossRefGoogle Scholar
  212. Prince RC (2010) Bioremediation of marine oil spills. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2617–2630CrossRefGoogle Scholar
  213. Prince RC, Walters CC (2016) Chapter 19: biodegradation of oil hydrocarbons and its implications for source identification. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics, 2nd edn. Academic Press, Boston, pp 869–916CrossRefGoogle Scholar
  214. Prince RC, Gramain A, McGenity TJ (2010) Prokaryotic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1669–1692CrossRefGoogle Scholar
  215. Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217CrossRefPubMedGoogle Scholar
  216. Radwan SS, Sorkhoh NA, Fardoun F, Al-Hasan RH (1995) Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol 44:265–270CrossRefGoogle Scholar
  217. Rahman KSM, Rahman TJ, Lakshmanaperumalsamy P, Marchant R, Banat IM (2003) The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnol 23:335–345CrossRefGoogle Scholar
  218. Rampelotto PH (2013) Extremophiles and extreme environments. Life Open Access J 3:482–485Google Scholar
  219. Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115: 491–503Google Scholar
  220. Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983CrossRefGoogle Scholar
  221. Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130CrossRefGoogle Scholar
  222. Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721CrossRefPubMedPubMedCentralGoogle Scholar
  223. Rike AG, Haugen KB, Børresen M, Engene B, Kolstad P (2003) In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Reg Sci Technol 37(2):97–120CrossRefGoogle Scholar
  224. Romaní AM, Chauvet E, Febria C, Mora-Gómez J, Risse-Buhl U, Timoner X, Weitere M, Zeglin L (2017) Chapter 4.1: the biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. In: Datry T, Bonada N, Boulton A (eds) Intermittent rivers and ephemeral streams. Academic Press, London, pp 161–188CrossRefGoogle Scholar
  225. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379PubMedPubMedCentralGoogle Scholar
  226. Rothschild LJ, Mancinelli R (2001) Life in extreme environments. Nature 409:35059215CrossRefGoogle Scholar
  227. Santini TC, Malcolm LI, Tyson GW, Warren LA (2016) pH and organic carbon dose rates control microbially driven bioremediation efficacy in alkaline bauxite residue. Environ Sci Technol 50:11164–11173CrossRefGoogle Scholar
  228. Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut 136:187–195CrossRefGoogle Scholar
  229. Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231CrossRefGoogle Scholar
  230. Schmidt TM, Schaechter M (2012) Topics in ecological and environmental microbiology. Academic Press, LondonGoogle Scholar
  231. Scoma A, Boon N (2016) Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2. Front Microbiol 7:729PubMedPubMedCentralGoogle Scholar
  232. Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016a) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526CrossRefPubMedPubMedCentralGoogle Scholar
  233. Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016b) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316CrossRefPubMedPubMedCentralGoogle Scholar
  234. Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 16:246–253CrossRefGoogle Scholar
  235. Seckbach J, Oren A, Stan-Lotter H (2013) Polyextremophiles: life under multiple forms of stress. Springer, DordrechtCrossRefGoogle Scholar
  236. Sexstone A, Atlas RM (1978) Persistence of oil in tundra soils [Includes textile manufacturing waste water, Alaska]. Dev Ind Microbiol USAGoogle Scholar
  237. Sexstone A, Everett K, Jenkins T, Atlas RM (1978) Fate of crude and refined oils in north slope soils. Arctic 31:339–347Google Scholar
  238. Sharma S (2012) Bioremediation: features, strategies and applications. Asian J Pharm Life Sci 2(2):202–213Google Scholar
  239. Sherry A, Grant RJ, Aitken CM, Jones DM, Head IM, Gray ND (2014) Volatile hydrocarbons inhibit methanogenic crude oil degradation. Front Microbiol 5:131CrossRefPubMedPubMedCentralGoogle Scholar
  240. Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[a]pyrene in surficial estuarine sediments. Appl Environ Microbiol 55:1391–1399PubMedPubMedCentralGoogle Scholar
  241. Shukla SK, Mangwani N, Rao TS, Das S (2014) Chapter 8: biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 203–232CrossRefGoogle Scholar
  242. Sierra-García IN, Alvarez JC, de Vasconcellos SP, de Souza AP, dos Santos Neto EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 9:e90087CrossRefPubMedPubMedCentralGoogle Scholar
  243. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, HobokenCrossRefGoogle Scholar
  244. Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Petroleum microbiology. Macmillan, New York, pp 1–59Google Scholar
  245. Singleton R, Amelunxen RE (1973) Proteins from thermophilic microorganisms. Bacteriol Rev 37:320–342PubMedPubMedCentralGoogle Scholar
  246. Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215CrossRefGoogle Scholar
  247. Smyth TJ, Perfumo A, Marchant R, Banat IM, Chen M, Thomas RK, Penfold J, Stevenson PS, Parry NJ (2010) Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Appl Microbiol Biotechnol 87:1347–1354CrossRefGoogle Scholar
  248. Speight JG, El-Gendy NS (2018a) Chapter 11: bioremediation of marine oil spills. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 419–470CrossRefGoogle Scholar
  249. Speight JG, El-Gendy NS (2018b) Chapter 1: petroleum composition and properties. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 1–39Google Scholar
  250. Speight JG, El-Gendy NS (2018c) Chapter 8: biotransformation in the environment. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 259–286CrossRefGoogle Scholar
  251. Speight JG, El-Gendy NS (2018d) Chapter 3: Introduction to petroleum biotechnology. In: Introduction to petroleum biotechnology. Gulf Professional Publishing, Boston, pp 69–101CrossRefGoogle Scholar
  252. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M et al (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365(6448):743Google Scholar
  253. Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O, Magot M (1996) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol 42:259–266CrossRefGoogle Scholar
  254. Tong M, Yuan S (2012) Physiochemical technologies for HCB remediation and disposal: a review. J Hazard Mater 229–230:1–14CrossRefGoogle Scholar
  255. Torsvik V, Øvreås L (2008) Microbial diversity, life strategies, and adaptation to life in extreme soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology, vol 13. Springer, Berlin/HeidelbergGoogle Scholar
  256. Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefPubMedPubMedCentralGoogle Scholar
  257. Ubalua AO (2011) Bioremediation strategies for oil polluted marine ecosystems. Aust J Agric Eng 2:160Google Scholar
  258. Ukiwe LN, Egereonu UU, Njoku PC, Nwoko CIA, Allinor JI (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5:43CrossRefGoogle Scholar
  259. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former Lake Texcoco (Mexico). Extremophiles 12:247–254CrossRefGoogle Scholar
  260. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549CrossRefPubMedPubMedCentralGoogle Scholar
  261. Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Reg Sci Technol 53:16–41CrossRefGoogle Scholar
  262. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286CrossRefGoogle Scholar
  263. Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 184:363–372CrossRefGoogle Scholar
  264. Vasco MF, Cepero MC, Restrepo S, Vives-Florez MJ (2011) Recovery of mitosporic fungi actively growing in soils after bacterial bioremediation of oily sludge and their potential for removing recalcitrant hydrocarbons. Int Biodeterior Biodegrad 65:649–655CrossRefGoogle Scholar
  265. Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411CrossRefGoogle Scholar
  266. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic Bacteria. Microbiol Mol Biol Rev 62:504–544PubMedPubMedCentralGoogle Scholar
  267. Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73(7):1163–1172CrossRefGoogle Scholar
  268. Walker JD, Colwell RR (1974) Microbial degradation of model petroleum at low temperatures. Microb Ecol 1:63–95CrossRefGoogle Scholar
  269. Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57:1222–1226CrossRefPubMedPubMedCentralGoogle Scholar
  270. Wang YN, Chi CQ, Cai M, Lou ZY, Tang YQ, Zhi XY, Li WJ, Wu XL, Du X (2010) Amycolicicoccus subflavus gen. Nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 60:638–643CrossRefGoogle Scholar
  271. Ward DM, Brock TD (1976) Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl Environ Microbiol 31(5):764–772PubMedPubMedCentralGoogle Scholar
  272. Ward DM, Brock TD (1978) Anaerobic metabolism of hexadecane in sediments. Geomicrobiol J 1(1):1–9CrossRefGoogle Scholar
  273. Westlake DWS, Jobson AM, Cook FD (1978) In situ degradation of oil in a soil of the boreal region of the Northwest Territories. Can J Microbiol 24:254–260CrossRefGoogle Scholar
  274. Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332CrossRefGoogle Scholar
  275. Whyte LG, Greer CW, Inniss WE (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol 42:99–106CrossRefGoogle Scholar
  276. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic Rhodococcussp. Appl Environ Microbiol 64:2578–2584PubMedPubMedCentralGoogle Scholar
  277. Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Biomeridiation J 3(1):69–80CrossRefGoogle Scholar
  278. Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6:415–422CrossRefGoogle Scholar
  279. Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108CrossRefGoogle Scholar
  280. Wilkinson S, Nicklin S, Faull JL (2002) Biodegradation of fuel oils and lubricants: soil and water bioremediation options. In: Ved Pal S, S Raymond D (eds) Progress in industrial microbiology. Elsevier, Amsterdam, pp 69–100Google Scholar
  281. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249CrossRefGoogle Scholar
  282. Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T et al (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U (VI) and geochemical control of U (VI) bioavailability. Environ Sci Technol 40(12):3986-3995Google Scholar
  283. Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164CrossRefGoogle Scholar
  284. Wynn-Williams DD (2000) Cyanobacteria in deserts – life at the limit? In: The ecology of cyanobacteria. Springer, Dordrecht, pp 341–366Google Scholar
  285. Yakimov MM, Giuliano L, Bruni V, Scarfì S, Golyshin PN (1999) Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol 22:249–256PubMedGoogle Scholar
  286. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432CrossRefGoogle Scholar
  287. Yang L, Lai CT, Shieh WK (2000) Biodegradation of dispersed diesel fuel under high salinity conditions. Water Res 34(13):3303–3314CrossRefGoogle Scholar
  288. Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19:371–381CrossRefGoogle Scholar
  289. Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PLoS One 9:e96552CrossRefPubMedPubMedCentralGoogle Scholar
  290. Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440PubMedPubMedCentralGoogle Scholar
  291. Zobell CE (1969) Microbial modification of crude oil in the sea. In: American Petroleum Institute, United States, Federal Water Pollution Control Administration (eds) Proceedings of the joint conference on prevention and control of oil spills. American Petroleum Institute, New York, pp 317–320Google Scholar
  292. Zobell CE (1973) Microbial degradation of oil: present status, problems and perspectives. In: Aheam DG, Meyer SP (eds) The microbial degradation of oil pollution. Center for Wetland Resources, Louisiana State University, Baton Rouge, pp 3–16Google Scholar
  293. Zumsteg A, Bååth E, Stierli B, Zeyer J, Frey B (2013) Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biol Biochem 61:121–132CrossRefGoogle Scholar
  294. Zvyagintseva IS, Poglazova MN, Gotoeva MT, Belyaev SS (2001) Effect on the medium salinity on oil degradation by Nocardioform Bacteria. Microbiology 70:652–656CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Oluwadara Oluwaseun Alegbeleye
    • 1
  1. 1.Department of Food Science, Faculty of Food EngineeringUniversity of Campinas-Sao PauloCampinasBrazil

Personalised recommendations