Plant-Microbe Association for Bioremediation of Hydrocarbon Substrates

  • Aneela Iqbal
  • Muhammad Arshad
  • Iftikhar Ahmed


Advancement in the standards of life quality along with awareness for environmental issues and the remediation of contaminated sites has attracted attention from society. Due to high cost of mechanical and chemical techniques for hydrocarbon remediation, the utilization of biological processes is gaining considerable attention. Plant-microbe association has been widely studied during the second half of the last century yet focusing on pathogenicity and plant-saprophytic associations like nitrogen fixation, improving soil nutrient cycles and plant growth, etc. However during the last decade, the emphasis has been shifted upon microbial communication with plants for remediation of hydrocarbon-contaminated sites. The efficacy of the remediation process mainly depends on the availability and performance of microbes having degradation genes responsible for enzymatic breakdown of organic contaminants as well as chemotaxis for hydrocarbons, biofilm production, cell surface hydrophobicity, and ability to produce biosurfactants. The rhizosphere and apoplast of the plants have been testified as the potential dwellings for microbes having degradation genes, but comparatively petite information is available about the degradation activities and metabolic pathways of endophytes. Diversity of biological systems warrants deep understanding of the mechanisms involved for utilizing plant-microbe association for bioremediation of hydrocarbons. This chapter focuses on an insight of the existing biological approaches for bioremediation of hydrocarbon-contaminated sites with emphasis upon required advancements in bioremediation and phytoremediation strategies to improve efficiency.


  1. Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653–675CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575CrossRefPubMedPubMedCentralGoogle Scholar
  3. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47CrossRefPubMedPubMedCentralGoogle Scholar
  4. Akbari A, Ghoshal S (2014) Pilot-scale bioremediation of a petroleum hydrocarbon contaminated clayey soil from a sub-arctic site. J Hazard Mater 280:595–602CrossRefPubMedPubMedCentralGoogle Scholar
  5. Almeida R, Mucha AP, Teixeira C, Bordalo AA, Almeida CMR (2013) Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Biodegradation 24:111–123CrossRefPubMedPubMedCentralGoogle Scholar
  6. Álvarez LM, Balbo AL, Mac Cormack W, Ruberto L (2015) Bioremediation of a petroleum hydrocarbon-contaminated Antarctic soil: optimization of a biostimulation strategy using response-surface methodology (RSM). Cold Reg Sci Technol 119:61–67CrossRefGoogle Scholar
  7. Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant–microbial associations. Appl Biochem Microbiol 40:568–572CrossRefGoogle Scholar
  9. Ayed HB, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M (2015) Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegrad 99:8–14CrossRefGoogle Scholar
  10. Azubuik CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:1–18CrossRefGoogle Scholar
  11. Balcom IN, Crowley DE (2010) Isolation and characterization of pyrene metabolizing microbial consortia from the plant rhizoplane. Int J Phytoremediation 12:599–615CrossRefPubMedPubMedCentralGoogle Scholar
  12. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Fields note: hydraulic containment of a BTEX plum using poplar trees. Int J Phytoremediation 11:416–424CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bastida F, Jehmlich N, Lima K, Morris B, Richnow H, Hernández T, von Bergen M, García C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost. J Proteome 1(135):162–169CrossRefGoogle Scholar
  16. Basumatary B, Bordoloi S, Sarma HP (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut 223:3373–3383CrossRefGoogle Scholar
  17. Becerra-Castro C, Kidd P, Prieto-Fernández Á, Weyens N, Acea M-J, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization. Plant Soil 340:413–433CrossRefGoogle Scholar
  18. Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32:271–280CrossRefPubMedPubMedCentralGoogle Scholar
  19. Beškoski VP, Gojgić-Cvijović G, Milić J, Ilić M, Miletić S, Šolević T, Vrvić MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)–a field experiment. Chemosphere 83:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bezza FA, Chirwa EMN (2015) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ Prot 98:354–364CrossRefGoogle Scholar
  21. Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505PubMedPubMedCentralGoogle Scholar
  22. Canosa I, Sanchez-Romero JM, Yuste L, Rojo F (2000) A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 35:791–799CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228CrossRefPubMedGoogle Scholar
  24. Child R, Anderson A, Miller C, Liang Y, Sims R (2007a) Pyrene mineralization by sp. strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265CrossRefPubMedPubMedCentralGoogle Scholar
  25. Child R, Miller C, Liang Y, Narasimham G, Chatterton J, Harrison P, Sims R, Britt D, Anderson A (2007b) Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 75:655–663CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144PubMedPubMedCentralGoogle Scholar
  27. Chouychai W, Thongkukiatkul A, Upatham S, Pokethitiyook P, Kruatrachue M, Lee H (2012) Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14Lr in two soils. Int J Phytorem 14:585–595CrossRefGoogle Scholar
  28. Compan S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959CrossRefGoogle Scholar
  29. Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810PubMedPubMedCentralGoogle Scholar
  30. Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234CrossRefGoogle Scholar
  31. de Garcia Salamone I, Hynes R, Nelson L (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195Google Scholar
  32. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135CrossRefGoogle Scholar
  34. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333CrossRefPubMedPubMedCentralGoogle Scholar
  35. Doughty DM, Sayavedra-Soto LA, Arp DJ, Bottomley PJ (2006) Product repression of alkane monooxygenase expression in Pseudomonas butanovora. J Bacteriol 188:2586–2592CrossRefPubMedPubMedCentralGoogle Scholar
  36. Doughty DM, Halsey KH, Vieville CJ, Sayavedra-Soto LA, Arp DJ, Bottomley PJ (2007) Propionate inactivation of butane monooxygenase activity in ‘Pseudomonas butanovora’: biochemical and physiological implications. Microbiology 153:3722–3729CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fajardo A, Martinez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (north of Algeria). Int Biodeterior Biodegrad 86:300–308CrossRefGoogle Scholar
  39. Foght J (2010) Nitrogen fixation and hydrocarbon-oxidizing bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1661–1668CrossRefGoogle Scholar
  40. Franco MG, Corrêa SM, Marques M, Perez DV (2014) Emission of volatile organic compounds and greenhouse gases from the anaerobic bioremediation of soils contaminated with diesel. Water Air Soil Pollut 225:1–9CrossRefGoogle Scholar
  41. Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, vanBeilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gao Y-c, Guo S-H, Wang J-N, Li D, Wang H, Zeng D-H (2014) Effects of different remediation treatments on crude oil contaminated saline soil. Chemosphere 117:486–493CrossRefPubMedPubMedCentralGoogle Scholar
  43. Geng X, Boufadel MC, Personna YR, Lee K, Tsao D, Demicco ED (2014) BioB: a mathematical model for the biodegradation of low solubility hydrocarbons. Mar Pollut Bull 83:138–147CrossRefPubMedPubMedCentralGoogle Scholar
  44. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310CrossRefPubMedPubMedCentralGoogle Scholar
  45. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234CrossRefPubMedPubMedCentralGoogle Scholar
  46. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefPubMedPubMedCentralGoogle Scholar
  47. Golubev SN, Muratova AY, Wittenmayer L, Bondarenkova AD, Hirche F, Matora LY, Merbach W, Turkovskaya OV (2011) Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor–phenanthrene–Sinorhizobium meliloti interactions. Plant Physiol Biochem 49:600–608CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gomez F, Sartaj M (2013) Field scale ex-situ bioremediation of petroleum contaminated soil under cold climate conditions. Int Biodeterior Biodegrad 85:375–382CrossRefGoogle Scholar
  49. Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109CrossRefGoogle Scholar
  50. Guo M, Gong Z, Miao R, Rookes J, Cahill D, Zhuang J (2017) Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol Biochem 113:130–142CrossRefGoogle Scholar
  51. Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935CrossRefGoogle Scholar
  52. Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefPubMedPubMedCentralGoogle Scholar
  54. Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Q 36:1420–1428CrossRefGoogle Scholar
  55. Hasinger M, Scherr KE, Lundaa T, Bräuer L, Zach C, Loibner AP (2012) Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J Biotechnol 157:490–498CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hazelbauer GL, Lai W-C (2010) Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13:124–132CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ho YN, Mathew DC, Hsiao SC, Shih CH, Chien MF, Chiang HM, Huang CC (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219–220:43–49CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hong SH, Ryu HW, Kim J, Cho KS (2011) Rhizoremediation of diesel contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22:593–601CrossRefGoogle Scholar
  59. Horel A, Mortazavi B, Sobecky PA (2015) Input of organic matter enhances degradation of weathered diesel fuel in sub-tropical sediments. Sci Total Environ 533:82–90CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hosoda YK, Hamamura N, Takahata Y, Watanabe K (2005) Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Biodegradation 16(6):591–601CrossRefPubMedPubMedCentralGoogle Scholar
  61. Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130(3):465–476Google Scholar
  62. Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jidere CM, Akamigbo FOR, Ugwuanyi JO (2012) Phytoremediation potentials of cowpea (Vigina unguiculata) and maize (Zea mays) for hydrocarbon degradation in organic and inorganic manure-amended tropical typic paleustults. Int J Phytoremediation 14:362–373CrossRefPubMedPubMedCentralGoogle Scholar
  64. Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36:33–38CrossRefGoogle Scholar
  65. Juhanson J, Truu J, Heinaru E, Heinaru A (2009) Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 70:446–455CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Pet Biotechnol Dev Perspect 151:447–478Google Scholar
  67. Kathi S, Khan AB (2011) Phytoremediation approaches to PAH contaminated soil. Indian J Sci Technol 4:56–63Google Scholar
  68. Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244CrossRefGoogle Scholar
  69. Kaul S, Sharma T, Dhar MK (2016) “Omics” tools for better understanding the plant-endophyte interactions. Front Plant Sci 7:955. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kim S, Krajmalnik-Brown R, Kim J-O, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259CrossRefPubMedPubMedCentralGoogle Scholar
  71. Krell T, Lacal J, Munoz-Martinez F, AntonioReyes-Darias J, HilalCadirci B, Garcia-Fontana C (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kurth EG, Doughty DM, Bottomley PJ, Arpi DJ, Sayavedra-Sotol LA (2008) Involvement of BmoR and BmoGinn-alkane metabolism in ‘Pseudomonas butanovora. Microbiology 154:139–147CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339CrossRefPubMedPubMedCentralGoogle Scholar
  75. Li JH, Gao Y, Wu SC, Cheung KC, Wang XR, Wong MH (2008) Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Int J Phytoremediation 10:106–118CrossRefGoogle Scholar
  76. Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ, Strobel G (2012) Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Anton Leeuwenhoek 101:515–527CrossRefGoogle Scholar
  77. Liang J-L, JiangYang J-H, Nie Y, Wu X-L (2016) Regulation of the alkane hydroxylase CYP153 gene in a gram-positive alkane-degrading bacterium, Dietzia sp Strain DQ12-45-1b. Appl Environ Microbiol 82:608–619CrossRefPubMedPubMedCentralGoogle Scholar
  78. Locksley RM (2010) Asthma and allergic inflammation. Cell 140:777–783CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187CrossRefGoogle Scholar
  80. Lumactud R, Shen SY, Lau M, Fulthorpe R (2016) Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination. Front Microbiol 7:755CrossRefPubMedPubMedCentralGoogle Scholar
  81. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Brock biology of microorganisms, 12th edn. Benjamin Cummings, San Francisco, pp 1–1050Google Scholar
  82. Malfanova VN (2013) Endophytic bacteria with plant growth promoting and biocontrol abilities.
  83. Marin MM, Yuste L, Rojo F (2003) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185:3232–3237CrossRefPubMedPubMedCentralGoogle Scholar
  84. Meyer DD, Beker SA, Bücker F, Peralba MDCR, Guedes Frazzon AP, Osti JF, Andreazza R, Anastácio de Oliveira Camargo F, Bento FM (2014) Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int Biodeterior Biodegrad 95:356–363CrossRefGoogle Scholar
  85. Montagnolli RN, Lopes PRM, Bidoia ED (2015) Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess 187:1–17CrossRefGoogle Scholar
  86. Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556CrossRefPubMedPubMedCentralGoogle Scholar
  87. Muratova AY, Turkovskaya OV, Antonyuk LP, Makarov OE, Pozdnyakova LI, Ignatov VV (2005) Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 74:210–215CrossRefGoogle Scholar
  88. Muratova AY, Dmitrieva T, Panchenko L, Turkovskaya O (2008) Phytoremediation of oil-sludge-contaminated soil. Int J Phytoremediation 10:486–502CrossRefPubMedPubMedCentralGoogle Scholar
  89. Muratova AY, Golubev S, Wittenmayer L, Dmitrieva T, Bondarenkova A, Hirche F, Merbach W, Turkovskaya O (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66:514–521CrossRefGoogle Scholar
  90. Muratova AY, Bondarenkova A, Panchenko L, Turkovskaya O (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Appl Biochem Microbiol 46:789–794CrossRefGoogle Scholar
  91. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230CrossRefPubMedPubMedCentralGoogle Scholar
  92. Nguyen TT, Sabatini DA (2011) Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int J Mol Sci 12:1232–1244CrossRefPubMedPubMedCentralGoogle Scholar
  93. Nisenbaum M, HernanSendra G, CerdaGilbert GA, Scagliola M, Froilan Gonzalez J, ElenaMurialdo S (2013) Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci (China) 25:613–625CrossRefGoogle Scholar
  94. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefPubMedPubMedCentralGoogle Scholar
  95. Petrikov K, Delegan Y, Surin A, Ponamoreva O, Puntus I, Filonov A, Boronin A (2013) Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: formation and structure. Process Biochem 48:931–935CrossRefGoogle Scholar
  96. Pham VH, Kim J, Jeong S-W (2014) Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J Environ Biol 35:1145–1149PubMedPubMedCentralGoogle Scholar
  97. Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473CrossRefPubMedPubMedCentralGoogle Scholar
  98. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic Bacteria. Annu Rev Phytopathol 50(1):403–424Google Scholar
  99. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443CrossRefPubMedPubMedCentralGoogle Scholar
  100. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490Google Scholar
  101. Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivoraxbor kumensis induced by alkane utilization. J Bacteriol 188:3763–3773. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Santos DKF, Rufino RD, Luna JM, Santos VA Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401. CrossRefPubMedPubMedCentralGoogle Scholar
  103. Schneiker S, dos Santos VM, Bartels D, Bekel T, Brecht M, Buhrmester J (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivoraxbor kumensis. Nat Biotechnol 24:997–1004CrossRefPubMedPubMedCentralGoogle Scholar
  104. Schulz S, Giebler J, Chatzinotas A, Wick LY, Fetzer I, Welzl G, Harms H, Schloter M (2012) Plant litter and soil type drive abundance, activity and community structure of alkB harbouring microbes in different soil compartments. ISME J 6:1763–1774CrossRefPubMedPubMedCentralGoogle Scholar
  105. Scoma A, Yakimov MM, Boon N (2016) Challenging oil bioremediation at deep-sea hydrostatic pressure. Front Microbiol 7:1203. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Shemesh M, Kolter R, Losick R (2010) The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J Bacteriol 192:6352–6356CrossRefPubMedPubMedCentralGoogle Scholar
  107. Sheng XF, Gong JX (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592CrossRefGoogle Scholar
  108. Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeterior Biodegrad 62:88–95CrossRefGoogle Scholar
  109. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab AP, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475CrossRefPubMedPubMedCentralGoogle Scholar
  110. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sierra-Garcia IN, Alvarez JC, de Vasconcellos SP, de Souza AP, dos Santos EV, de Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 9:e90087. CrossRefPubMedPubMedCentralGoogle Scholar
  112. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397CrossRefPubMedPubMedCentralGoogle Scholar
  113. Smith RJ, Jeffries TC, Adetutu EM, Fairweather PG, Mitchell JG (2013) Determining the metabolic footprints of hydrocarbon degradation using multivariate analysis. PLoS One 8:e81910. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090CrossRefPubMedPubMedCentralGoogle Scholar
  115. Song XY, Li XX, Wang Y, Hu XJ (2012) Long-term phytoremediation process of diesel oil-contaminated soil. Adv Mater Res 414:280–283CrossRefGoogle Scholar
  116. Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108:2070–2077CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  118. Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128CrossRefGoogle Scholar
  119. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  120. Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823CrossRefPubMedPubMedCentralGoogle Scholar
  121. Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276CrossRefPubMedGoogle Scholar
  122. Thomas F, Cébron A (2016) Short-term rhizosphere effect on available carbon sources, Phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil. Front Microbiol 7:92. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Toyama T, Furukawa T, Maeda N Inoue D, Sei K, Mori K (2011) Accelerated biodegradation of pyrene and benzo-a-pyrene in the Phragmites australis rhizosphere by bacteria-root exudates interactions. Water Res 45:1629–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tyagi M, da Fonseca MMR, deCarvalho C (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tzintzun-Camacho O, Loera O, Ramirez-Saad HC, Gutierrez-Rojas M (2012) Comparison of mechanisms of hexadecane uptake among pure and mixed cultures derived from a bacterial consortium. Int Biodeterior Biodegrad 70:1–7CrossRefGoogle Scholar
  126. Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165CrossRefPubMedPubMedCentralGoogle Scholar
  127. Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245. CrossRefPubMedPubMedCentralGoogle Scholar
  128. Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL (2004) Methylobacterium populi sp. nov, a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoidesxnigra DN34). Int J Syst Evol Microbiol 54:1191–1196CrossRefPubMedPubMedCentralGoogle Scholar
  129. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21CrossRefPubMedPubMedCentralGoogle Scholar
  130. van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5(3–4):161–174CrossRefPubMedPubMedCentralGoogle Scholar
  131. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147(6):1621–1630CrossRefPubMedPubMedCentralGoogle Scholar
  132. van Beilen JB, Marin MM, Smits THM, Rothlisberger M, Franchini AG, Witholt B (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbon oclastic bacterium Alcanivoraxbor kumensis. Environ Microbiol 6:264–273CrossRefPubMedPubMedCentralGoogle Scholar
  133. van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Mol Biol Rev 67(4):503–549CrossRefGoogle Scholar
  134. Venosa AD, Campo P, Suidan MT (2010) Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil spill. Environ Sci Technol 44:7613–7621CrossRefPubMedPubMedCentralGoogle Scholar
  135. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  136. Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116. CrossRefPubMedPubMedCentralGoogle Scholar
  137. Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol Biochem 42:1051–1057CrossRefGoogle Scholar
  138. Wang MC, Chen YT, Chen SH, Chang CSW, Sunkara SV (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  139. Wang SY, Kuo YC, Hong A, Chang YM, Kao CM (2016) Bioremediation of diesel and lubricant oil-contaminated soils using enhanced land farming system. Chemosphere 164:558–567CrossRefPubMedPubMedCentralGoogle Scholar
  140. Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T (2009) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843CrossRefGoogle Scholar
  141. Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427CrossRefPubMedPubMedCentralGoogle Scholar
  142. Weyens N, Boulet J, Adriaensen K, Timmermans J-P, Prinsen E, Van Oevelen S, D’Haen J, Smeets K, Van Der Lelie D, Taghavi S, Vangronsveld J (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derivative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356(1):217–230CrossRefGoogle Scholar
  143. Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp.WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498CrossRefPubMedPubMedCentralGoogle Scholar
  144. Xue JL, Yu Y, Bai Y, Wang LP, Wu YN (2015) Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71:220–228CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6(4):102–106Google Scholar
  146. Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010a) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010b) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401CrossRefPubMedPubMedCentralGoogle Scholar
  148. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yu XZ, Wu SC, Wu FY, Wong MH (2011) Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 186:1206–1217CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovic R (2012a) Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma 175:176:1–176:8Google Scholar
  151. Zhang XS, Xu DJ, Zhu CY, Lundaam T, Scherr KE (2012b) Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J 209:138–146CrossRefGoogle Scholar
  152. Zhong Y, Wang J, Song Y, Liang Y, Li G (2012) Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil. Front Environ Sci Eng 6(6):797–805CrossRefGoogle Scholar
  153. Zin NM, Sarmin NI, Ghadin N, Basri DF, Sidik NM, Hess WM, Strobel GA (2007) Bioactive endophytic streptomycetes from the Malay Peninsula. FEMS Microbiol Lett 274:83–88CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Aneela Iqbal
    • 1
  • Muhammad Arshad
    • 1
  • Iftikhar Ahmed
    • 2
  1. 1.Institute of Environmental Sciences and Engineering, School of Civil and Environmental EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Microbial Genetic Resources Program (MGRP)Bioresource Conservation Institute (BCI), National Agricultural Research Centre (NARC)IslamabadPakistan

Personalised recommendations